Quantitative Analysis of Single-Molecule RNA-Protein Interaction

Fuhrmann A, Schöning JC, Anselmetti D, Staiger D, Ros R (2009)
Biophysical Journal 96(12): 5030-5039.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ;
RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule data in combination with competition assays and site-directed mutagenesis of both the RNA target and the RNA-binding domain of the protein allowed us to distinguish and quantify two different binding modes. For dwell times <0.21 s an unspecific complex with a lifetime of 0.56 s is observed, whereas dwell times >0.33 s result in a specific interaction with a lifetime of 208 s. The corresponding reaction lengths are 0.28 nm for the unspecific and 0.55 nm for the specific AtGRP8-RNA interactions, indicating formation of a tighter complex with increasing dwell time. These two binding modes cannot be dissected in ensemble experiments. Quantitative titration in RNA bandshift experiments yields an ensemble-averaged equilibrium constant of dissociation of K-D = 2 x 10(-7) M. Assuming comparable on-rates for the specific and nonspecific binding modes allows us to estimate their free energies as Delta G(0) = -42 kJ/mol and Delta G(0) = -28 kJ/mol for the specific and nonspecific binding modes, respectively. Thus, we show that single-molecule force spectroscopy with a refined statistical analysis is a potent tool for the analysis of protein-RNA interactions without the drawback of ensemble averaging. This makes it possible to discriminate between different binding modes or sites and to analyze them quantitatively. We propose that this method could be applied to complex interactions of biomolecules in general, and be of particular interest for the investigation of multivalent binding reactions.
Publishing Year

Cite this

Fuhrmann A, Schöning JC, Anselmetti D, Staiger D, Ros R. Quantitative Analysis of Single-Molecule RNA-Protein Interaction. Biophysical Journal. 2009;96(12):5030-5039.
Fuhrmann, A., Schöning, J. C., Anselmetti, D., Staiger, D., & Ros, R. (2009). Quantitative Analysis of Single-Molecule RNA-Protein Interaction. Biophysical Journal, 96(12), 5030-5039. doi:10.1016/j.bpj.2009.03.022
Fuhrmann, A., Schöning, J. C., Anselmetti, D., Staiger, D., and Ros, R. (2009). Quantitative Analysis of Single-Molecule RNA-Protein Interaction. Biophysical Journal 96, 5030-5039.
Fuhrmann, A., et al., 2009. Quantitative Analysis of Single-Molecule RNA-Protein Interaction. Biophysical Journal, 96(12), p 5030-5039.
A. Fuhrmann, et al., “Quantitative Analysis of Single-Molecule RNA-Protein Interaction”, Biophysical Journal, vol. 96, 2009, pp. 5030-5039.
Fuhrmann, A., Schöning, J.C., Anselmetti, D., Staiger, D., Ros, R.: Quantitative Analysis of Single-Molecule RNA-Protein Interaction. Biophysical Journal. 96, 5030-5039 (2009).
Fuhrmann, Alexander, Schöning, Jan C., Anselmetti, Dario, Staiger, Dorothee, and Ros, Robert. “Quantitative Analysis of Single-Molecule RNA-Protein Interaction”. Biophysical Journal 96.12 (2009): 5030-5039.
This data publication is cited in the following publications:
This publication cites the following data publications:

15 Citations in Europe PMC

Data provided by Europe PubMed Central.

Directly measuring single-molecule heterogeneity using force spectroscopy.
Hinczewski M, Hyeon C, Thirumalai D., Proc Natl Acad Sci U S A 113(27), 2016
PMID: 27317744
Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
Harder A, Möller AK, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D., Biophys J 108(7), 2015
PMID: 25863062
Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy.
Dumitru AC, Herruzo ET, Rausell E, Ceña V, Garcia R., Nanoscale 7(47), 2015
PMID: 26580848
Single molecule binding dynamics measured with atomic force microscopy.
van Es MH, Tang J, Preiner J, Hinterdorfer P, Oosterkamp TH., Ultramicroscopy 140(), 2014
PMID: 24657418
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D., Biochem Biophys Res Commun 453(1), 2014
PMID: 25251471
Analysis of DNA interactions using single-molecule force spectroscopy.
Ritzefeld M, Walhorn V, Anselmetti D, Sewald N., Amino Acids 44(6), 2013
PMID: 23468137
Long lifetime of hydrogen-bonded DNA basepairs by force spectroscopy.
Fuhrmann A, Getfert S, Fu Q, Reimann P, Lindsay S, Ros R., Biophys J 102(10), 2012
PMID: 22677392
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Application of atomic force microscopy for characteristics of single intermolecular interactions.
Safenkova IV, Zherdev AV, Dzantievf BB., Biochemistry (Mosc) 77(13), 2012
PMID: 23379527
Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging.
Kaur P, Qiang-Fu, Fuhrmann A, Ros R, Kutner LO, Schneeweis LA, Navoa R, Steger K, Xie L, Yonan C, Abraham R, Grace MJ, Lindsay S., Biophys J 100(1), 2011
PMID: 21190677
Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding.
Heus HA, Puchner EM, van Vugt-Jonker AJ, Zimmermann JL, Gaub HE., Anal Biochem 414(1), 2011
PMID: 21402049
Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle.
Kihara T, Yoshida N, Kitagawa T, Nakamura C, Nakamura N, Miyake J., Biosens Bioelectron 26(4), 2010
PMID: 20708917

44 References

Data provided by Europe PubMed Central.

Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy.
Henn A, Medalia O, Shi SP, Steinberg M, Franceschi F, Sagi I., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11296244
An RNA toolbox for single-molecule force spectroscopy studies.
Vilfan ID, Kamping W, van den Hout M, Candelli A, Hage S, Dekker NH., Nucleic Acids Res. 35(19), 2007
PMID: 17905817
Dynamic strength of molecular adhesion bonds.
Evans E, Ritchie K., Biophys. J. 72(4), 1997
PMID: 9083660
Theoretical analysis of single-molecule force spectroscopy experiments: heterogeneity of chemical bonds.
Raible M, Evstigneev M, Bartels FW, Eckel R, Nguyen-Duong M, Merkel R, Ros R, Anselmetti D, Reimann P., Biophys. J. 90(11), 2006
PMID: 16513778
Refined procedure of evaluating experimental single-molecule force spectroscopy data
Fuhrmann A., Getfert S., Anselmetti D., Reimann P., Ros R.., 2008
Calibration of atomic-force microscope tips
Hutter J.L., Bechhoefer J.., 1993
Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy
Rief M, Oesterhelt F, Heymann B, Gaub HE., Science 275(5304), 1997
PMID: 9036852
Dynamic force spectroscopy: optimized data analysis
Evstigneev M., Reimann P.., 2003
Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes.
Raible M, Evstigneev M, Reimann P, Bartels FW, Ros R., J. Biotechnol. 112(1-2), 2004
PMID: 15288937
Models for the specific adhesion of cells to cells.
Bell GI., Science 200(4342), 1978
PMID: 347575
Handbook of RNA Biochemistry
Hartmann R.K., Bindereif A., Schön A., Westhof E.., 2005
Changes of conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy
Schüttpelz M., Schöning J.C., Doose S., Neuweiler H., Peters E.., 2008


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 19527663
PubMed | Europe PMC

Search this title in

Google Scholar