Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

Gomez-Porras J, Riano-Pachon DM, Dreyer I, Mayer JE, Mueller-Roeber B (2007)
BMC GENOMICS 8(1): 260.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Background: In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid ( ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an insilico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements ( CREs), ABRE and CE3, in thale cress ( Arabidopsis thaliana) and rice ( Oryza sativa). Results: Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element ( CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes ( ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion: Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.
Erscheinungsjahr
Zeitschriftentitel
BMC GENOMICS
Band
8
Zeitschriftennummer
1
Artikelnummer
260
ISSN
PUB-ID

Zitieren

Gomez-Porras J, Riano-Pachon DM, Dreyer I, Mayer JE, Mueller-Roeber B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS. 2007;8(1): 260.
Gomez-Porras, J., Riano-Pachon, D. M., Dreyer, I., Mayer, J. E., & Mueller-Roeber, B. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS, 8(1), 260. doi:10.1186/1471-2164-8-260
Gomez-Porras, J., Riano-Pachon, D. M., Dreyer, I., Mayer, J. E., and Mueller-Roeber, B. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS 8:260.
Gomez-Porras, J., et al., 2007. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS, 8(1): 260.
J. Gomez-Porras, et al., “Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice”, BMC GENOMICS, vol. 8, 2007, : 260.
Gomez-Porras, J., Riano-Pachon, D.M., Dreyer, I., Mayer, J.E., Mueller-Roeber, B.: Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS. 8, : 260 (2007).
Gomez-Porras, Judith, Riano-Pachon, Diego Mauricio, Dreyer, Ingo, Mayer, Jorge E., and Mueller-Roeber, Bernd. “Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice”. BMC GENOMICS 8.1 (2007): 260.

68 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota.
Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C., J Exp Bot 69(16), 2018
PMID: 29860511
Actin depolymerization-induced changes in proteome of Arabidopsis roots.
Takáč T, Bekešová S, Šamaj J., J Proteomics 153(), 2017
PMID: 27321584
Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.
Watanabe KA, Homayouni A, Gu L, Huang KY, Ho TD, Shen QJ., Plant Cell Environ 40(9), 2017
PMID: 28626890
RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.
Cohen SP, Liu H, Argueso CT, Pereira A, Vera Cruz C, Verdier V, Leach JE., PLoS One 12(11), 2017
PMID: 29107972
Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
Mahoney AK, Anderson EM, Bakker RA, Williams AF, Flood JJ, Sullivan KC, Pillitteri LJ., Planta 243(4), 2016
PMID: 26748914
GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway.
Mauri N, Fernández-Marcos M, Costas C, Desvoyes B, Pichel A, Caro E, Gutierrez C., Sci Rep 6(), 2016
PMID: 26939893
PP2C-like Promoter and Its Deletion Variants Are Induced by ABA but Not by MeJA and SA in Arabidopsis thaliana.
Bhalothia P, Sangwan C, Alok A, Mehrotra S, Mehrotra R., Front Plant Sci 7(), 2016
PMID: 27200023
The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns.
Jin Y, Zhang C, Liu W, Tang Y, Qi H, Chen H, Cao S., Front Plant Sci 7(), 2016
PMID: 27242871
Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants.
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D., Plant Cell 28(8), 2016
PMID: 27436713
Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell Environ 38(1), 2015
PMID: 24738645
Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL.
Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, Rigault P, Hayden MJ, Gubler F., Genome Biol 16(), 2015
PMID: 25962727
A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis.
Rutowicz K, Puzio M, Halibart-Puzio J, Lirski M, Kotliński M, Kroteń MA, Knizewski L, Lange B, Muszewska A, Śniegowska-Świerk K, Kościelniak J, Iwanicka-Nowicka R, Buza K, Janowiak F, Żmuda K, Jõesaar I, Laskowska-Kaszub K, Fogtman A, Kollist H, Zielenkiewicz P, Tiuryn J, Siedlecki P, Swiezewski S, Ginalski K, Koblowska M, Archacki R, Wilczynski B, Rapacz M, Jerzmanowski A., Plant Physiol 169(3), 2015
PMID: 26351307
Genome-wide identification and expression analysis of WNK kinase gene family in rice.
Manuka R, Saddhe AA, Kumar K., Comput Biol Chem 59 Pt A(), 2015
PMID: 26414948
The role of ABA and MAPK signaling pathways in plant abiotic stress responses.
Danquah A, de Zelicourt A, Colcombet J, Hirt H., Biotechnol Adv 32(1), 2014
PMID: 24091291
Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana.
Mishra S, Shukla A, Upadhyay S, Sanchita, Sharma P, Singh S, Phukan UJ, Meena A, Khan F, Tripathi V, Shukla RK, Shrama A., J Integr Plant Biol 56(4), 2014
PMID: 24581225
BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus.
Ying L, Chen H, Cai W., Plant Physiol Biochem 79(), 2014
PMID: 24690671
Abscisic acid perception and signaling: structural mechanisms and applications.
Ng LM, Melcher K, Teh BT, Xu HE., Acta Pharmacol Sin 35(5), 2014
PMID: 24786231
The role of abscisic acid in fruit ripening and responses to abiotic stress.
Leng P, Yuan B, Guo Y., J Exp Bot 65(16), 2014
PMID: 24821949
Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.
Cruz TM, Carvalho RF, Richardson DN, Duque P., Int J Mol Sci 15(10), 2014
PMID: 25268622
Systems biology-based approaches toward understanding drought tolerance in food crops.
Jogaiah S, Govind SR, Tran LS., Crit Rev Biotechnol 33(1), 2013
PMID: 22364373
Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture.
Rabara RC, Tripathi P, Lin J, Rushton PJ., Biochem Biophys Res Commun 431(3), 2013
PMID: 23333328
Patterns and evolution of ACGT repeat cis-element landscape across four plant genomes.
Mehrotra R, Sethi S, Zutshi I, Bhalothia P, Mehrotra S., BMC Genomics 14(), 2013
PMID: 23530833
The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase.
Djafi N, Vergnolle C, Cantrel C, Wietrzyñski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E., Front Plant Sci 4(), 2013
PMID: 23964284
Genome-wide analysis of endosperm-specific genes in rice.
Nie DM, Ouyang YD, Wang X, Zhou W, Hu CG, Yao J., Gene 530(2), 2013
PMID: 23948082
Bidirectional promoters in seed development and related hormone/stress responses.
Kourmpetli S, Lee K, Hemsley R, Rossignol P, Papageorgiou T, Drea S., BMC Plant Biol 13(), 2013
PMID: 24261334
Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean.
Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K., DNA Res 19(1), 2012
PMID: 22184637
Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.
Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W., Plant Physiol 158(3), 2012
PMID: 22247272
Molecular analysis of a sunflower gene encoding an homologous of the B subunit of a CAAT binding factor.
Salvini M, Sani E, Fambrini M, Pistelli L, Pucciariello C, Pugliesi C., Mol Biol Rep 39(6), 2012
PMID: 22359114
microRNAs responsive to ozone-induced oxidative stress in Arabidopsis thaliana.
Iyer NJ, Jia X, Sunkar R, Tang G, Mahalingam R., Plant Signal Behav 7(4), 2012
PMID: 22499183
Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression.
Leida C, Conejero A, Arbona V, Gómez-Cadenas A, Llácer G, Badenes ML, Ríos G., PLoS One 7(5), 2012
PMID: 22590512
The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis.
Han SK, Sang Y, Rodrigues A, BIOL425 F2010, Wu MF, Rodriguez PL, Wagner D., Plant Cell 24(12), 2012
PMID: 23209114
Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk.
Friedel S, Usadel B, von Wirén N, Sreenivasulu N., Front Plant Sci 3(), 2012
PMID: 23293646
Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum.
Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS., Mol Biol Rep 38(2), 2011
PMID: 20407836
Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data.
Yamamoto YY, Yoshioka Y, Hyakumachi M, Maruyama K, Yamaguchi-Shinozaki K, Tokizawa M, Koyama H., BMC Plant Biol 11(), 2011
PMID: 21349196
Prediction and validation of promoters involved in the abscisic acid response in Physcomitrella patens.
Timmerhaus G, Hanke ST, Buchta K, Rensing SA., Mol Plant 4(4), 2011
PMID: 21398384
ABA-mediated transcriptional regulation in response to osmotic stress in plants.
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K., J Plant Res 124(4), 2011
PMID: 21416314
Prediction of new abiotic stress genes in Arabidopsis thaliana and Oryza sativa according to enumeration-based statistical analysis.
Cserháti M, Turóczy Z, Zombori Z, Cserzo M, Dudits D, Pongor S, Györgyey J., Mol Genet Genomics 285(5), 2011
PMID: 21437642
Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells.
Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM., BMC Genomics 12(), 2011
PMID: 21554708
Gene expression profile changes in germinating rice.
He D, Han C, Yang P., J Integr Plant Biol 53(10), 2011
PMID: 21910826
An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.
Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell Physiol 52(12), 2011
PMID: 22025559
AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K., Plant J 61(4), 2010
PMID: 19947981
OsLEA1a, a new Em-like protein of cereal plants.
Shih MD, Huang LT, Wei FJ, Wu MT, Hoekstra FA, Hsing YI., Plant Cell Physiol 51(12), 2010
PMID: 21097897
Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.
Lenka SK, Lohia B, Kumar A, Chinnusamy V, Bansal KC., Plant Mol Biol 69(3), 2009
PMID: 18998058
Comparative expression and transcript initiation of three peach dehydrin genes.
Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE., Planta 230(1), 2009
PMID: 19360436
Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter.
Manavella PA, Dezar CA, Ariel FD, Chan RL., Plant Physiol Biochem 46(10), 2008
PMID: 18586510
Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis.
Ho LH, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van Aken O, Whelan J., Plant Physiol 147(4), 2008
PMID: 18567827
Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis.
Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y., BMC Genomics 9(), 2008
PMID: 19021904
A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens.
Qudeimat E, Faltusz AM, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W., Proc Natl Acad Sci U S A 105(49), 2008
PMID: 19050080

48 References

Daten bereitgestellt von Europe PubMed Central.

Transcriptional coactivator complexes.
Naar AM, Lemon BD, Tjian R., Annu. Rev. Biochem. 70(), 2001
PMID: 11395415
Abscisic acid-responsive sequences from the em gene of wheat.
Marcotte WR Jr, Russell SH, Quatrano RS., Plant Cell 1(10), 1989
PMID: 2562556
Genome wide analysis of Arabidopsis core promoters.
Molina C, Grotewold E., BMC Genomics 6(), 2005
PMID: 15733318
ABSCISIC ACID SIGNAL TRANSDUCTION.
Leung J, Giraudat J., Annu. Rev. Plant Physiol. Plant Mol. Biol. 49(), 1998
PMID: 15012233
Abscisic acid signaling in seeds and seedlings.
Finkelstein RR, Gampala SS, Rock CD., Plant Cell 14 Suppl(), 2002
PMID: 12045268
Relay and control of abscisic acid signaling.
Himmelbach A, Yang Y, Grill E., Curr. Opin. Plant Biol. 6(5), 2003
PMID: 12972048
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki K, Shinozaki K., Trends Plant Sci. 10(2), 2005
PMID: 15708346
Cross-talk in abscisic acid signaling.
Fedoroff NV, Fedoroff NV., Sci. STKE 2002(140), 2002
PMID: 12107340
Complex regulation of ABA biosynthesis in plants.
Seo M, Koshiba T., Trends Plant Sci. 7(1), 2002
PMID: 11804826
Regulation of abscisic acid-induced transcription.
Busk PK, Pages M., Plant Mol. Biol. 37(3), 1998
PMID: 9617810
Experimentally determined sequence requirement of ACGT-containing abscisic acid response element.
Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A., Plant Cell Physiol. 43(1), 2002
PMID: 11828032
Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene.
Mundy J, Yamaguchi-Shinozaki K, Chua NH., Proc. Natl. Acad. Sci. U.S.A. 87(4), 1990
PMID: 2137613
Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.
Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K., Plant J. 34(2), 2003
PMID: 12694590
A plant leucine zipper protein that recognizes an abscisic acid response element.
Guiltinan MJ, Marcotte WR Jr, Quatrano RS., Science 250(4978), 1990
PMID: 2145628
Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K., Proc. Natl. Acad. Sci. U.S.A. 97(21), 2000
PMID: 11005831
ABFs, a family of ABA-responsive element binding factors.
Choi H, Hong J, Ha J, Kang J, Kim SY., J. Biol. Chem. 275(3), 2000
PMID: 10636868
The Institute for Genomic Research
AUTHOR UNKNOWN, 0
Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems.
Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K., Plant J. 38(6), 2004
PMID: 15165189
Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray.
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K., Funct. Integr. Genomics 2(6), 2002
PMID: 12444421
Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress.
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF., Plant Physiol. 130(4), 2002
PMID: 12481097
Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis.
Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S., Physiol. Genomics 17(2), 2004
PMID: 14982972
Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Physiol. 133(4), 2003
PMID: 14645724
PlnTFDB: an integrative plant transcription factor database.
Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B., BMC Bioinformatics 8(), 2007
PMID: 17286856
Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression.
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K., Plant Cell 9(10), 1997
PMID: 9368419
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Arabidopsis Genome Initiative., Nature 408(6814), 2000
PMID: 11130711
The map-based sequence of the rice genome.
International Rice Genome Sequencing Project., Nature 436(7052), 2005
PMID: 16100779

Gómez-Porras JL., 2005
Deciphering principles of transcription regulation in eukaryotic genomes.
Nguyen DH, D'haeseleer P., Mol. Syst. Biol. 2(), 2006
PMID: 16738557
EMBOSS: the European Molecular Biology Open Software Suite.
Rice P, Longden I, Bleasby A., Trends Genet. 16(6), 2000
PMID: 10827456
Weblogo
AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17672917
PubMed | Europe PMC

Suchen in

Google Scholar