Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation

Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D (2007)
The Plant Journal 52(6): 1119-1130.

Download
OA
Journal Article | Published | English
Author
; ; ; ; ; ; ;
Abstract
The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels. In contrast, constitutive ectopic overexpression of the AtGRP7-RQ mutant does not lead to alternative splicing of the endogenous AtGRP7 transcript and concomitant damping of the oscillations. This highlights the importance of AtGRP7 binding to its own transcript for the negative auto-regulatory circuit. Moreover, regulation of AtGRP7 downstream targets also depends on its RNA-binding activity, as AtGRP8 and other targets identified by transcript profiling of wild-type and AtGRP7-ox plants using fluorescent differential display are negatively affected by AtGRP7 but not by AtGRP7-RQ. In mutants impaired in the nonsense-mediated decay (NMD) components UPF1 or UPF3, levels of the alternatively spliced AtGRP7 and AtGRP8 transcripts that contain premature termination codons are strongly elevated, implicating UPF1 and UPF3 in the decay of these clock-regulated transcripts.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Schöning JC, Streitner C, Page DR, et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 2007;52(6):1119-1130.
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., et al. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), 1119-1130.
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., and Staiger, D. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal 52, 1119-1130.
Schöning, J.C., et al., 2007. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), p 1119-1130.
J.C. Schöning, et al., “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”, The Plant Journal, vol. 52, 2007, pp. 1119-1130.
Schöning, J.C., Streitner, C., Page, D.R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D.: Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 52, 1119-1130 (2007).
Schöning, Jan C., Streitner, Corinna, Page, Damian R., Hennig, Sven, Uchida, Kenko, Wolf, Eva, Furuya, Masaki, and Staiger, Dorothee. “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”. The Plant Journal 52.6 (2007): 1119-1130.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2011-12-02 14:21:03

This data publication is cited in the following publications:
This publication cites the following data publications:

53 Citations in Europe PMC

Data provided by Europe PubMed Central.

HnRNP-like proteins as post-transcriptional regulators.
Yeap WC, Namasivayam P, Ho CL., Plant Sci. 227(), 2014
PMID: 25219311

55 References

Data provided by Europe PubMed Central.


Hall, 2006
Multiple and Slave Oscillators
Staiger, 2006
Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA.
Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM., Genes Dev. 13(9), 1999
PMID: 10323862

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17924945
PubMed | Europe PMC

Search this title in

Google Scholar