Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation

Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D (2007)
The Plant Journal 52(6): 1119-1130.

Download
OA
Journal Article | Original Article | Published | English
Author
; ; ; ; ; ; ;
Abstract
The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels. In contrast, constitutive ectopic overexpression of the AtGRP7-RQ mutant does not lead to alternative splicing of the endogenous AtGRP7 transcript and concomitant damping of the oscillations. This highlights the importance of AtGRP7 binding to its own transcript for the negative auto-regulatory circuit. Moreover, regulation of AtGRP7 downstream targets also depends on its RNA-binding activity, as AtGRP8 and other targets identified by transcript profiling of wild-type and AtGRP7-ox plants using fluorescent differential display are negatively affected by AtGRP7 but not by AtGRP7-RQ. In mutants impaired in the nonsense-mediated decay (NMD) components UPF1 or UPF3, levels of the alternatively spliced AtGRP7 and AtGRP8 transcripts that contain premature termination codons are strongly elevated, implicating UPF1 and UPF3 in the decay of these clock-regulated transcripts.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Schöning JC, Streitner C, Page DR, et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 2007;52(6):1119-1130.
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., et al. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), 1119-1130. doi:10.1111/j.1365-313X.2007.03302.x
Schöning, J. C., Streitner, C., Page, D. R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., and Staiger, D. (2007). Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal 52, 1119-1130.
Schöning, J.C., et al., 2007. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal, 52(6), p 1119-1130.
J.C. Schöning, et al., “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”, The Plant Journal, vol. 52, 2007, pp. 1119-1130.
Schöning, J.C., Streitner, C., Page, D.R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D.: Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal. 52, 1119-1130 (2007).
Schöning, Jan C., Streitner, Corinna, Page, Damian R., Hennig, Sven, Uchida, Kenko, Wolf, Eva, Furuya, Masaki, and Staiger, Dorothee. “Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation”. The Plant Journal 52.6 (2007): 1119-1130.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-11-07T09:52:24Z

This data publication is cited in the following publications:
This publication cites the following data publications:

64 Citations in Europe PMC

Data provided by Europe PubMed Central.

Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Koster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol. 18(1), 2017
PMID: 29084609
RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A.
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y., J. Exp. Bot. 68(7), 2017
PMID: 28369599
Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants.
Nyiko T, Auber A, Szabadkai L, Benkovics A, Auth M, Merai Z, Kerenyi Z, Dinnyes A, Nagy F, Silhavy D., Nucleic Acids Res. 45(7), 2017
PMID: 28062855
Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis.
Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B., Mol. Plant Microbe Interact. 28(3), 2015
PMID: 25372122
HnRNP-like proteins as post-transcriptional regulators.
Yeap WC, Namasivayam P, Ho CL., Plant Sci. 227(), 2014
PMID: 25219311
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Muller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct. Plant Biol. 41(4), 2014
PMID: IND500739485
EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses.
Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL., Plant Cell Rep. 31(10), 2012
PMID: 22699852
Post-transcriptional controls - adding a new layer of regulation to clock gene expression.
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L., Trends Cell Biol. 20(9), 2010
PMID: 20630760

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17924945
PubMed | Europe PMC

Search this title in

Google Scholar