Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography

Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Gölzhäuser A (2007)
SMALL 3(12): 2114-2119.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Extreme-UV interference lithography (EUV-IL) is applied to create chemical nanopatterns in self-assembled monolayers (SAMs) of 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) on gold. X-ray photoelectron spectroscopy shows that EUV irradiation induces both the conversion of the terminal nitro groups of NBPT into amino gro ups and the lateral crosslinking of the underlying aromatic cores. Large-area (approximate to 2 mm(2)) nitro/amino chemical patterns with periods ranging from 2000 nm to 60 nm can be generated. Regions of pristine NBPT on the exposed samples are exchanged with protein-resistant thiol SAMs of polyethyleneglycol, resulting in the formation of molecular nanotemplates, which can serve as the basis of complex biomimetic surfaces.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Gölzhäuser A. Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. SMALL. 2007;3(12):2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H. H., David, C., & Gölzhäuser, A. (2007). Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. SMALL, 3(12), 2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H. H., David, C., and Gölzhäuser, A. (2007). Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. SMALL 3, 2114-2119.
Turchanin, A., et al., 2007. Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. SMALL, 3(12), p 2114-2119.
A. Turchanin, et al., “Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography”, SMALL, vol. 3, 2007, pp. 2114-2119.
Turchanin, A., Schnietz, M., El-Desawy, M., Solak, H.H., David, C., Gölzhäuser, A.: Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. SMALL. 3, 2114-2119 (2007).
Turchanin, Andrey, Schnietz, Mark, El-Desawy, Mohamed, Solak, Harun H., David, Christian, and Gölzhäuser, Armin. “Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography”. SMALL 3.12 (2007): 2114-2119.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Golzhauser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
The height of cell-adhesive nanoposts generated by block copolymer/surfactant complex systems influences the preosteoblast phenotype.
Jeong EJ, Lee JW, Kwark YJ, Kim SH, Lee KY., Colloids Surf B Biointerfaces 123(), 2014
PMID: 25456988
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Golzhauser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285
Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs.
Amiaud L, Houplin J, Bourdier M, Humblot V, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 16(3), 2014
PMID: 24287704
Selective terminal function modification of SAMs driven by low-energy electrons (0-15 eV).
Houplin J, Amiaud L, Humblot V, Martin I, Matar E, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 15(19), 2013
PMID: 23558312
Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.
Tizazu G, el Zubir O, Patole S, McLaren A, Vasilev C, Mothersole DJ, Adawi A, Hunter CN, Lidzey DG, Lopez GP, Leggett GJ., Biointerphases 7(1-4), 2012
PMID: 22949077
Nanostructures and functional materials fabricated by interferometric lithography.
Xia D, Ku Z, Lee SC, Brueck SR., Adv. Mater. Weinheim 23(2), 2011
PMID: 20976672
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Golzhauser A., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20886488
Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum.
Kankate L, Werner U, Turchanin A, Golzhauser A, Grossmann H, Tampe R., Biointerphases 5(2), 2010
PMID: 20831346
The Janus-SAM approach for the flexible functionalization of gold and titanium oxide surfaces.
Bhat R, Sell S, Wagner R, Zhang JT, Pan C, Garipcan B, Boland W, Bossert J, Klemm E, Jandt KD., Small 6(3), 2010
PMID: 19924741
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967

27 References

Data provided by Europe PubMed Central.

Photon-beam lithography reaches 12.5 nm half-pitch resolution
Solak, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 25(1), 2007
Applications of dip-pen nanolithography.
Salaita K, Wang Y, Mirkin CA., Nat Nanotechnol 2(3), 2007
PMID: 18654244

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17960749
PubMed | Europe PMC

Search this title in

Google Scholar