"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry

Taatjes CA, Hansen N, Osborn DL, Kohse-Höinghaus K, Cool TA, Westmoreland PR (2008)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 10(1): 20-34.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
The combination of multiplexed mass spectrometry with photoionization by tunable-synchrotron radiation has proved to be a powerful tool to investigate elementary reaction kinetics and the chemistry of low-pressure flames. In both of these applications, multiple-mass detection and the ease of tunability of synchrotron radiation make it possible to acquire full sets of data as a function of mass, photon energy, and of the physical dimension of the system, e. g. distance from the burner or time after reaction initiation. The data are in essence an indirect image of the chemistry. The data can be quantitatively correlated and integrated along any of several dimensions to compare to traditional measurements such as time or distance profiles of individual chemical species, but it can also be directly interpreted in image form. This perspective offers an overview of flame chemistry and chemical kinetics measurements that combine tunable photoionization with multiple-mass detection, emphasizing the overall insight that can be gained from multidimensional data on these systems. The low-pressure flame apparatus is capable of providing isomer-resolved mass spectra of stable and radical species as a function of position in the flame. The overall chemical structure of the flames can be readily seen from images of the evolving mass spectrum as distance from the burner increases, with isomer-specific information given in images of the photoionization efficiency. Several flames are compared in this manner, with a focus on identification of global differences in fuel-decomposition and soot-formation pathways. Differences in the chemistry of flames of isomeric fuels can be discerned. The application of multiplexed synchrotron photoionization to elementary reaction kinetics permits identification of time-resolved isomeric composition in reacting systems. The power of this technique is illustrated by the separation of direct and dissociative ionization signals in the reaction of C2H5 with O-2; by the resolution of isomeric products in reactions of the ethynyl ( C2H) radical; and by preliminary observation of branching to methyl + propargyl products in the self-reaction of vinyl radicals. Finally, prospects for future research using multiplexed photoionization mass spectrometry are explored.
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
10
Ausgabe
1
Seite(n)
20-34
ISSN
eISSN
PUB-ID

Zitieren

Taatjes CA, Hansen N, Osborn DL, Kohse-Höinghaus K, Cool TA, Westmoreland PR. "Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2008;10(1):20-34.
Taatjes, C. A., Hansen, N., Osborn, D. L., Kohse-Höinghaus, K., Cool, T. A., & Westmoreland, P. R. (2008). "Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 10(1), 20-34. doi:10.1039/b713460f
Taatjes, C. A., Hansen, N., Osborn, D. L., Kohse-Höinghaus, K., Cool, T. A., and Westmoreland, P. R. (2008). "Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 10, 20-34.
Taatjes, C.A., et al., 2008. "Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 10(1), p 20-34.
C.A. Taatjes, et al., “"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 10, 2008, pp. 20-34.
Taatjes, C.A., Hansen, N., Osborn, D.L., Kohse-Höinghaus, K., Cool, T.A., Westmoreland, P.R.: "Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 10, 20-34 (2008).
Taatjes, Craig A., Hansen, Nils, Osborn, David L., Kohse-Höinghaus, Katharina, Cool, Terrill A., and Westmoreland, Phillip R. “"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 10.1 (2008): 20-34.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Kinetics of the a-C3H5 + O2 reaction, investigated by photoionization using synchrotron radiation.
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K., Phys Chem Chem Phys 20(16), 2018
PMID: 29340384
Vibrational satellites of C2S, C3S, and C4S: microwave spectral taxonomy as a stepping stone to the millimeter-wave band.
McGuire BA, Martin-Drumel MA, Lee KLK, Stanton JF, Gottlieb CA, McCarthy MC., Phys Chem Chem Phys 20(20), 2018
PMID: 29740643
Vacuum ultraviolet photoionization cross section of the hydroxyl radical.
Dodson LG, Savee JD, Gozem S, Shen L, Krylov AI, Taatjes CA, Osborn DL, Okumura M., J Chem Phys 148(18), 2018
PMID: 29764149
Isomer-Selective Generation and Spectroscopic Characterization of Picolyl Radicals.
Reusch E, Holzmeier F, Constantinidis P, Hemberger P, Fischer I., Angew Chem Int Ed Engl 56(27), 2017
PMID: 28508574
Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis.
Hemberger P, Custodis VBF, Bodi A, Gerber T, van Bokhoven JA., Nat Commun 8(), 2017
PMID: 28660882
Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.
Hoyermann K, Mauß F, Olzmann M, Welz O, Zeuch T., Phys Chem Chem Phys 19(28), 2017
PMID: 28681879
CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies.
Sztáray B, Voronova K, Torma KG, Covert KJ, Bodi A, Hemberger P, Gerber T, Osborn DL., J Chem Phys 147(1), 2017
PMID: 28688391
Products of Criegee intermediate reactions with NO2: experimental measurements and tropospheric implications.
Caravan RL, Khan MAH, Rotavera B, Papajak E, Antonov IO, Chen MW, Au K, Chao W, Osborn DL, Lin JJ, Percival CJ, Shallcross DE, Taatjes CA., Faraday Discuss 200(), 2017
PMID: 28604897
Crossed beam polyatomic reaction dynamics: recent advances and new insights.
Pan H, Liu K, Caracciolo A, Casavecchia P., Chem Soc Rev 46(24), 2017
PMID: 29168517
On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.
Holzmeier F, Fischer I, Kiendl B, Krueger A, Bodi A, Hemberger P., Phys Chem Chem Phys 18(13), 2016
PMID: 26975696
Combustion Chemistry Diagnostics for Cleaner Processes.
Kohse-Höinghaus K., Chemistry 22(38), 2016
PMID: 27440049
High-resolution time and spatial imaging of tobacco and its pyrolysis products during a cigarette puff by microprobe sampling photoionisation mass spectrometry.
Hertz-Schünemann R, Ehlert S, Streibel T, Liu C, McAdam K, Baker RR, Zimmermann R., Anal Bioanal Chem 407(8), 2015
PMID: 25627787
Carbon radicals. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH).
Savee JD, Papajak E, Rotavera B, Huang H, Eskola AJ, Welz O, Sheps L, Taatjes CA, Zádor J, Osborn DL., Science 347(6222), 2015
PMID: 25657245
Flow tube studies of the C((3)P) reactions with ethylene and propylene.
Capron M, Bourgalais J, Abhinavam Kailasanathan RK, Osborn DL, Le Picard SD, Goulay F., Phys Chem Chem Phys 17(37), 2015
PMID: 26304769
Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis.
Taatjes CA, Shallcross DE, Percival CJ., Phys Chem Chem Phys 16(5), 2014
PMID: 24096945
Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone.
Scheer AM, Welz O, Zádor J, Osborn DL, Taatjes CA., Phys Chem Chem Phys 16(26), 2014
PMID: 24585023
Improved ionization energies for the two isomers of phenylpropargyl radical.
Holzmeier F, Lang M, Hemberger P, Fischer I., Chemphyschem 15(16), 2014
PMID: 25111244
A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.
Oldham JM, Abeysekera C, Joalland B, Zack LN, Prozument K, Sims IR, Park GB, Field RW, Suits AG., J Chem Phys 141(15), 2014
PMID: 25338889
Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame.
Krüger J, Garcia GA, Felsmann D, Moshammer K, Lackner A, Brockhinke A, Nahon L, Kohse-Höinghaus K., Phys Chem Chem Phys 16(41), 2014
PMID: 25237782
Using distonic radical ions to probe the chemistry of key combustion intermediates: the case of the benzoxyl radical anion.
Li C, Lam AK, Khairallah GN, White JM, O'Hair RA, da Silva G., J Am Soc Mass Spectrom 24(4), 2013
PMID: 23512425
Photoionisation of the tropyl radical.
Fischer KH, Hemberger P, Bodi A, Fischer I., Beilstein J Org Chem 9(), 2013
PMID: 23616813
Directly measuring reaction kinetics of ˙QOOH--a crucial but elusive intermediate in hydrocarbon autoignition.
Zádor J, Huang H, Welz O, Zetterberg J, Osborn DL, Taatjes CA., Phys Chem Chem Phys 15(26), 2013
PMID: 23689671
H2CN+ and H2CNH+: new insight into the structure and dynamics from mass-selected threshold photoelectron spectra.
Holzmeier F, Lang M, Hader K, Hemberger P, Fischer I., J Chem Phys 138(21), 2013
PMID: 23758374
Note: absolute photoionization cross-section of the vinyl radical.
Savee JD, Lockyear JF, Borkar S, Eskola AJ, Welz O, Taatjes CA, Osborn DL., J Chem Phys 139(5), 2013
PMID: 23927291
On the mechanism of iodine oxide particle formation.
Gómez Martín JC, Gálvez O, Baeza-Romero MT, Ingham T, Plane JM, Blitz MA., Phys Chem Chem Phys 15(37), 2013
PMID: 23942624
Pressure dependent product formation in the photochemically initiated allyl + allyl reaction.
Seidel L, Hoyermann K, Mauß F, Nothdurft J, Zeuch T., Molecules 18(11), 2013
PMID: 24192913
Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol.
Welz O, Zádor J, Savee JD, Ng MY, Meloni G, Fernandes RX, Sheps L, Simmons BA, Lee TS, Osborn DL, Taatjes CA., Phys Chem Chem Phys 14(9), 2012
PMID: 22286869
Near-threshold shape resonance in the photoionization of 2-butyne.
Xu H, Jacovella U, Ruscic B, Pratt ST, Lucchese RR., J Chem Phys 136(15), 2012
PMID: 22519322
Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
Taatjes CA, Welz O, Eskola AJ, Savee JD, Osborn DL, Lee EP, Dyke JM, Mok DW, Shallcross DE, Percival CJ., Phys Chem Chem Phys 14(30), 2012
PMID: 22481381
New mechanistic insights to the O(3P) + propene reaction from multiplexed photoionization mass spectrometry.
Savee JD, Welz O, Taatjes CA, Osborn DL., Phys Chem Chem Phys 14(30), 2012
PMID: 22744650
Detailed product analysis during the low temperature oxidation of n-butane.
Herbinet O, Battin-Leclerc F, Bax S, Le Gall H, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Phys Chem Chem Phys 13(1), 2011
PMID: 21031192
Photoionization of C7H6 and C7H5: observation of the fulvenallenyl radical.
Steinbauer M, Hemberger P, Fischer I, Bodi A., Chemphyschem 12(10), 2011
PMID: 21132691
Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models.
Battin-Leclerc F, Blurock E, Bounaceur R, Fournet R, Glaude PA, Herbinet O, Sirjean B, Warth V., Chem Soc Rev 40(9), 2011
PMID: 21597604
Detection of pentatetraene by reaction of the ethynyl radical (C2H) with allene (CH2=C=CH2) at room temperature.
Goulay F, Soorkia S, Meloni G, Osborn DL, Taatjes CA, Leone SR., Phys Chem Chem Phys 13(46), 2011
PMID: 22002654
Untangling the chemical evolution of Titan's atmosphere and surface--from homogeneous to heterogeneous chemistry.
Kaiser RI, Maksyutenko P, Ennis C, Zhang F, Gu X, Krishtal SP, Mebel AM, Kostko O, Ahmed M., Faraday Discuss 147(), 2010
PMID: 21302560
Chemical dynamics, molecular energetics, and kinetics at the synchrotron.
Leone SR, Ahmed M, Wilson KR., Phys Chem Chem Phys 12(25), 2010
PMID: 20419177
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew Chem Int Ed Engl 49(21), 2010
PMID: 20446278
The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame.
Hansen N, Li W, Law ME, Kasper T, Westmoreland PR, Yang B, Cool TA, Lucassen A., Phys Chem Chem Phys 12(38), 2010
PMID: 20820554
The multiplexed chemical kinetic photoionization mass spectrometer: a new approach to isomer-resolved chemical kinetics.
Osborn DL, Zou P, Johnsen H, Hayden CC, Taatjes CA, Knyazev VD, North SW, Peterka DS, Ahmed M, Leone SR., Rev Sci Instrum 79(10), 2008
PMID: 19044733

127 References

Daten bereitgestellt von Europe PubMed Central.


Kaiser, Environ. Sci. Technol. 26(), 1992

Kaiser, Environ. Sci. Technol. 25(), 1991
Automotive fuels and internal combustion engines: a chemical perspective.
Wallington TJ, Kaiser EW, Farrell JT., Chem Soc Rev 35(4), 2006
PMID: 16565750

Kayes, Environ. Sci. Technol. 33(), 1999

Zervas, Fuel 83(), 2004

Miller, Combust. Flame 91(), 1992

Miller, J. Phys. Chem. A 107(), 2003

Yamada, Proc. Combust. Inst. 30(), 2005

Kelly-Zion, Proc. Combust. Inst. 28(), 2000

Westbrook, Proc. Combust. Inst. 28(), 2000

Walker, 1997

Homann, Z. Phys. Chem., Neue Folge 37(), 1963

Milne, J. Chem. Phys. 44(), 1966

Biordi, Prog. Energy Combust. Sci. 3(), 1977

Biordi, Combust. Flame 23(), 1974

Bittner, 1981

Westmoreland, 1986

Peeters, Symp. (Int.) Combust. 14(), 1973

Werner, Chem. Phys. Lett. 290(), 1998

Cool, Rev. Sci. Instrum. 76(), 2005

Cool, J. Chem. Phys. 119(), 2003

Huang, Energy Fuels 20(), 2006

Yang, Chem. Phys. Lett. 423(), 2006

Zhang, J. Chem. Phys. 124(), 2006

Huang, Rev. Sci. Instrum. 76(), 2005
Enols are common intermediates in hydrocarbon oxidation.
Taatjes CA, Hansen N, McIlroy A, Miller JA, Senosiain JP, Klippenstein SJ, Qi F, Sheng L, Zhang Y, Cool TA, Wang J, Westmoreland PR, Law ME, Kasper T, Kohse-Hoinghaus K., Science 308(5730), 2005
PMID: 15890844
Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations.
Hansen N, Klippenstein SJ, Miller JA, Wang J, Cool TA, Law ME, Westmoreland PR, Kasper T, Kohse-Hoinghaus K., J Phys Chem A 110(13), 2006
PMID: 16571041
Synchrotron photoionization measurements of combustion intermediates: photoionization efficiency and identification of C3H2 isomers.
Taatjes CA, Klippenstein SJ, Hansen N, Miller JA, Cool TA, Wang J, Law ME, Westmoreland PR., Phys Chem Chem Phys 7(5), 2005
PMID: 19791365

Taatjes, Chem. Phys. Lett. 394(), 2004

Cool, Proc. Combust. Inst. 30(), 2005
Combustion chemistry of enols: possible ethenol precursors in flames.
Taatjes CA, Hansen N, Miller JA, Cool TA, Wang J, Westmoreland PR, Law ME, Kasper T, Kohse-Hoinghaus K., J Phys Chem A 110(9), 2006
PMID: 16509650
Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames.
Hansen N, Klippenstein SJ, Taatjes CA, Miller JA, Wang J, Cool TA, Yang B, Yang R, Wei L, Huang C, Wang J, Qi F, Law ME, Westmoreland PR., J Phys Chem A 110(10), 2006
PMID: 16526650

Law, Proc. Combust. Inst. 31(), 2007

Kohse-Höinghaus, Proc. Combust. Inst. 31(), 2007

Cool, Proc. Combust. Inst. 31(), 2007
A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames.
Hansen N, Klippenstein SJ, Westmoreland PR, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA., Phys Chem Chem Phys 10(3), 2007
PMID: 18174978

Hansen, Proc. Combust. Inst. 31(), 2007
Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters.
Osswald P, Struckmeier U, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR., J Phys Chem A 111(19), 2007
PMID: 17388390
Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame.
Hansen N, Kasper T, Klippenstein SJ, Westmoreland PR, Law ME, Taatjes CA, Kohse-Hoinghaus K, Wang J, Cool TA., J Phys Chem A 111(19), 2007
PMID: 17300183
Energy-resolved photoionization of alkylperoxy radicals and the stability of their cations.
Meloni G, Zou P, Klippenstein SJ, Ahmed M, Leone SR, Taatjes CA, Osborn DL., J. Am. Chem. Soc. 128(41), 2006
PMID: 17031970
Direct detection of polyynes formation from the reaction of ethynyl radical (C2H) with propyne (CH3-C[triple bond]CH) and allene (CH2=C=CH2).
Goulay F, Osborn DL, Taatjes CA, Zou P, Meloni G, Leone SR., Phys Chem Chem Phys 9(31), 2006
PMID: 17687477

Slagle, J. Am. Chem. Soc. 103(), 1981

Suits, Phys. Chem. Chem. Phys. 8(), 2006

Chandler, J. Chem. Phys. 87(), 1987

Suits, J. Chem. Phys. 96(), 1992
Reaction product imaging: the h + d2 reaction.
Kitsopoulos TN, Buntine MA, Baldwin DP, Zare RN, Chandler DW., Science 260(5114), 1993
PMID: 17810201

Suits, Rev. Sci. Instrum. 66(), 1995

Cool, Int. J. Mass Spectrom. 247(), 2005

Wang, 2007

Kamphus, Proc. Combust. Inst. 29(), 2003
Photoionization of hot radicals: C2H5, n-C3H7, and i-C3H7.
Fan H, Pratt ST., J Chem Phys 123(20), 2005
PMID: 16351250
Near-threshold photoionization of hot isopropyl radicals.
Fan H, Pratt ST., J Chem Phys 124(11), 2006
PMID: 16555893

Osborn, 2007

Sinha, Rev. Sci. Instrum. 62(), 1991

Sinha, Proc. SPIE-Int. Soc. Opt. Eng. 5048(), 2003

Lampton, IEEE Trans. Nucl. Sci. 37(), 1990

Lampton, Rev. Sci. Instrum. 58(), 1987

Moore, Int. J. Mass Spectrom. Ion Phys. 24(), 1977

Taatjes, Int. J. Chem. Kinet. 39(), 2007
Photoionization of 1-alkenylperoxy and alkylperoxy radicals and a general rule for the stability of their cations.
Meloni G, Selby TM, Goulay F, Leone SR, Osborn DL, Taatjes CA., J. Am. Chem. Soc. 129(45), 2007
PMID: 17941639

McEnally, Proc. Combust. Inst. 31(), 2007

McEnally, Prog. Energy Combust. Sci. 32(), 2006

Lemaire, Combust. Flame 127(), 2001

King, Int. J. Chem. Kinet. 11(), 1979

McEnally, Combust. Flame 143(), 2005

Brown, J. Phys. Chem. 90(), 1986

Koizumi, Radiat. Phys. Chem. 32(), 1988

Lias, 2005

Slagle, J. Phys. Chem. 94(), 1990

Lee, Proc. Combust. Inst. 30(), 2005

Kasper, 2006

Yang, Combust. Flame 148(), 2007

Refaey, J. Chem. Phys. 48(), 1968

Matti, J. Electron Spectrosc. Relat. Phenom. 49(), 1989

Ruscic, J. Chem. Phys. 101(), 1994
Reaction of ethylene with hydroxyl radicals: a theoretical study.
Senosiain JP, Klippenstein SJ, Miller JA., J Phys Chem A 110(21), 2006
PMID: 16722710

Hippler, Phys. Chem. Chem. Phys. 2(), 2000

Yamada, J. Phys. Chem. A 103(), 1999
Experimental and modeling study of C5H10O2 ethyl and methyl esters.
Metcalfe WK, Dooley S, Curran HJ, Simmie JM, El-Nahas AM, Navarro MV., J Phys Chem A 111(19), 2007
PMID: 17284020
Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate.
El-Nahas AM, Navarro MV, Simmie JM, Bozzelli JW, Curran HJ, Dooley S, Metcalfe W., J Phys Chem A 111(19), 2007
PMID: 17286391
Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine.
McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS., Environ. Sci. Technol. 35(9), 2001
PMID: 11355187

Zhao, 2003

Pitz, Combust. Flame 63(), 1986

McDade, J. Photochem. 20(), 1982

Wu, Int. J. Chem. Kinet. 18(), 1986

Plumb, J. Phys. Chem. 85(), 1981

Washida, Int. J. Chem. Kinet. 8(), 1976

Slagle, J. Am. Chem. Soc. 107(), 1985
Generation and detection of alkyl peroxy radicals in a supersonic jet expansion.
Fu HB, Hu YJ, Bernstein ER., J Chem Phys 125(1), 2006
PMID: 16863301

Muller, J. Am. Chem. Soc. 80(), 1958

Radom, J. Am. Chem. Soc. 94(), 1972

Bobeldijk, Chem. Phys. 179(), 1994

Kaiser, J. Chem. Phys. 114(), 2001

Fahr, J. Phys. Chem. 94(), 1990

Fahr, J. Phys. Chem. 95(), 1990

Thorn, J. Phys. Chem. 100(), 1996

Robinson, J. Chem. Phys. 119(), 2003
Photofragment translational spectroscopy of 1,3-butadiene and 1,3-butadiene-1,1,4,4-d(4) at 193 nm.
Robinson JC, Harris SA, Sun W, Sveum NE, Neumark DM., J. Am. Chem. Soc. 124(34), 2002
PMID: 12188686

Lee, Chem.–Eur. J. 9(), 2003

Handford-Styring, Phys. Chem. Chem. Phys. 3(), 2001

Gulati, J. Chem. Soc., Faraday Trans. 2 85(), 1989

Cavallotti, Proc. Combust. Inst. 31(), 2007

Sirjean, Proc. Combust. Inst. 31(), 2007

Pitz, Proc. Combust. Inst. 31(), 2007
Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation.
Orme JP, Curran HJ, Simmie JM., J Phys Chem A 110(1), 2006
PMID: 16392847

Buda, Energy Fuels 20(), 2006
Detailed chemical kinetic modeling of cyclohexane oxidation.
Silke EJ, Pitz WJ, Westbrook CK, Ribaucour M., J Phys Chem A 111(19), 2007
PMID: 17388266

Voisin, Combust. Sci. Technol. 138(), 1998

El, Proc. Combust. Inst. 28(), 2000
Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2.
Knepp AM, Meloni G, Jusinski LE, Taatjes CA, Cavallotti C, Klippenstein SJ., Phys Chem Chem Phys 9(31), 2007
PMID: 17687479

Sveum, Phys. Chem. Chem. Phys. 8(), 2005

Robinson, Chem. Phys. Lett. 383(), 2004

McEnally, Anal. Chem. 71(), 1999
Decomposition and hydrocarbon growth processes for esters in non-premixed flames.
Schwartz WR, McEnally CS, Pfefferle LD., J Phys Chem A 110(21), 2006
PMID: 16722677

Werner, Combust. Flame 120(), 2000

Bernstein, Combust. Flame 92(), 1993

McIlroy, Proc. Combust. Inst. 28(), 2000
Time-of-flight mass spectrometry for time-resolved measurements.
Blitz MA, Goddard A, Ingham T, Pilling MJ., Rev Sci Instrum 78(3), 2007
PMID: 17411198
A frequency comb in the extreme ultraviolet.
Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler HA, Krausz F, Hansch TW., Nature 436(7048), 2005
PMID: 16015324

Zinkstok, Phys. Rev. A 73(), 2006

Shallcross, Atmos. Environ. 40(), 2006

Percival, J. Photochem. Photobiol., A 176(), 2005
A kinetics and mechanistic study of the atmospherically relevant reaction between molecular chlorine and dimethyl sulfide (DMS).
Dyke JM, Ghosh MV, Kinnison DJ, Levita G, Morris A, Shallcross DE., Phys Chem Chem Phys 7(5), 2005
PMID: 19791374

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18075680
PubMed | Europe PMC

Suchen in

Google Scholar