The Shapley value of phylogenetic trees

Haake C-J, Kashiwada A, Su FE (2008)
JOURNAL OF MATHEMATICAL BIOLOGY 56(4): 479-497.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
Every weighted tree corresponds naturally to a cooperative game that we call a tree game; it assigns to each subset of leaves the sum of the weights of the minimal subtree spanned by those leaves. In the context of phylogenetic trees, the leaves are species and this assignment captures the diversity present in the coalition of species considered. We consider the Shapley value of tree games and suggest a biological interpretation. We determine the linear transformation M that shows the dependence of the Shapley value on the edge weights of the tree, and we also compute a null space basis of M. Both depend on the split counts of the tree. Finally, we characterize the Shapley value on tree games by four axioms, a counterpart to Shapley's original theorem on the larger class of cooperative games. We also include a brief discussion of the core of tree games.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Haake C-J, Kashiwada A, Su FE. The Shapley value of phylogenetic trees. JOURNAL OF MATHEMATICAL BIOLOGY. 2008;56(4):479-497.
Haake, C. - J., Kashiwada, A., & Su, F. E. (2008). The Shapley value of phylogenetic trees. JOURNAL OF MATHEMATICAL BIOLOGY, 56(4), 479-497.
Haake, C. - J., Kashiwada, A., and Su, F. E. (2008). The Shapley value of phylogenetic trees. JOURNAL OF MATHEMATICAL BIOLOGY 56, 479-497.
Haake, C.-J., Kashiwada, A., & Su, F.E., 2008. The Shapley value of phylogenetic trees. JOURNAL OF MATHEMATICAL BIOLOGY, 56(4), p 479-497.
C.-J. Haake, A. Kashiwada, and F.E. Su, “The Shapley value of phylogenetic trees”, JOURNAL OF MATHEMATICAL BIOLOGY, vol. 56, 2008, pp. 479-497.
Haake, C.-J., Kashiwada, A., Su, F.E.: The Shapley value of phylogenetic trees. JOURNAL OF MATHEMATICAL BIOLOGY. 56, 479-497 (2008).
Haake, Claus-Jochen, Kashiwada, Akemi, and Su, Francis Edward. “The Shapley value of phylogenetic trees”. JOURNAL OF MATHEMATICAL BIOLOGY 56.4 (2008): 479-497.
This data publication is cited in the following publications:
This publication cites the following data publications:

8 Citations in Europe PMC

Data provided by Europe PubMed Central.

Measuring Evolutionary Isolation for Conservation.
Redding DW, Mazel F, Mooers AO., PLoS ONE 9(12), 2014
PMID: 25493934
Prioritizing populations for conservation using phylogenetic networks.
Volkmann L, Martyn I, Moulton V, Spillner A, Mooers AO., PLoS ONE 9(2), 2014
PMID: 24586451
Computing evolutionary distinctiveness indices in large scale analysis.
Martyn I, Kuhn TS, Mooers AO, Moulton V, Spillner A., Algorithms Mol Biol 7(), 2012
PMID: 22502588
Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation.
Collen B, Turvey ST, Waterman C, Meredith HM, Kuhn TS, Baillie JE, Isaac NJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1578), 2011
PMID: 21844040
BIO::Phylo-phyloinformatic analysis using perl.
Vos RA, Caravas J, Hartmann K, Jensen MA, Miller C., BMC Bioinformatics 12(), 2011
PMID: 21352572

18 References

Data provided by Europe PubMed Central.


Billera, Adv. Appl. Math. 27(4), 2001

Day, 2003

Faith, Biol. Conserv. 61(), 1992

Felsenstein, 2004

Kar, Games Econ. Behav. 38(), 2002
Phylogenetic diversity within seconds.
Minh BQ, Klaere S, von Haeseler A., Syst. Biol. 55(5), 2006
PMID: 17060198

Mooers, 2005

Myerson, Math. Oper. Res. 2(3), 1977

Nehring, Econometrica 70(3), 2002

Owen, SIAM J. Algebra Discrete Math. 7(2), 1986

Pardi, PLoS Genet. 1(e71), 2005

Pavoine, Ecol. Lett. 8(), 2005

Semple, 2003

AUTHOR UNKNOWN, 0
Phylogenetic diversity and the greedy algorithm.
Steel M., Syst. Biol. 54(4), 2005
PMID: 16051588

Weitzman, Q. J. Econ. 107(2), 1992

Weitzman, Econometrica 66(6), 1998

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17805545
PubMed | Europe PMC

Search this title in

Google Scholar