The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations

Czurylo EA, Hellweg T, Eimer W, Dabrowska R (1997)
Biophysical Journal 72(2): 835-842.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
The size and the shape of caldesmon as well as its 50-kDa central and 19-kDa C-terminal fragments were investigated by photon correlation spectroscopy. The hydrodynamic radii, which have been calculated from the experimentally obtained translational diffusion coefficients, are 9.8 nm, 6.0 nm, and 2.9 nm, respectively. Moreover, the experimental values for the translational diffusion coefficients are compared with results obtained from hydrodynamic model calculations. Detailed models for the structure of caldesmon in solution are derived. The contour length is about 64 nm for all of the models used for caldesmon.
Erscheinungsjahr
Zeitschriftentitel
Biophysical Journal
Band
72
Zeitschriftennummer
2
Seite
835-842
ISSN
PUB-ID

Zitieren

Czurylo EA, Hellweg T, Eimer W, Dabrowska R. The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations. Biophysical Journal. 1997;72(2):835-842.
Czurylo, E. A., Hellweg, T., Eimer, W., & Dabrowska, R. (1997). The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations. Biophysical Journal, 72(2), 835-842. doi:10.1016/S0006-3495(97)78717-4
Czurylo, E. A., Hellweg, T., Eimer, W., and Dabrowska, R. (1997). The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations. Biophysical Journal 72, 835-842.
Czurylo, E.A., et al., 1997. The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations. Biophysical Journal, 72(2), p 835-842.
E.A. Czurylo, et al., “The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations”, Biophysical Journal, vol. 72, 1997, pp. 835-842.
Czurylo, E.A., Hellweg, T., Eimer, W., Dabrowska, R.: The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations. Biophysical Journal. 72, 835-842 (1997).
Czurylo, EA, Hellweg, Thomas, Eimer, W, and Dabrowska, R. “The size and shape of caldesmon and its fragments in solution studied by dynamic light scattering and hydrodynamic model calculations”. Biophysical Journal 72.2 (1997): 835-842.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

43 References

Daten bereitgestellt von Europe PubMed Central.

Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments.
Moody C, Lehman W, Craig R., J. Muscle Res. Cell. Motil. 11(2), 1990
PMID: 2351755
Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin.
Mabuchi K, Wang CL., J. Muscle Res. Cell. Motil. 12(2), 1991
PMID: 2061408
A long helix from the central region of smooth muscle caldesmon.
Wang CL, Chalovich JM, Graceffa P, Lu RC, Mabuchi K, Stafford WF., J. Biol. Chem. 266(21), 1991
PMID: 1856225
Spectrofluorimetric studies on C-terminal 34 kDa fragment of caldesmon.
Czurylo EA, Emelyanenko VI, Permyakov EA, Dabrowska R., Biophys. Chem. 40(2), 1991
PMID: 1883949
The molecular anatomy of caldesmon.
Marston SB, Redwood CS., Biochem. J. 279 ( Pt 1)(), 1991
PMID: 1930128
Molecular shape of vinculin in aqueous solution.
Eimer W, Niermann M, Eppe MA, Jockusch BM., J. Mol. Biol. 229(1), 1993
PMID: 8421297
Electron microscopic images suggest both ends of caldesmon interact with actin filaments.
Mabuchi K, Lin JJ, Wang CL., J. Muscle Res. Cell. Motil. 14(1), 1993
PMID: 8478429
Studies on secondary structure of caldesmon and its C-terminal fragments.
Czurylo EA, Venyaminov SYu , Dabrowska R., Biochem. J. 293 ( Pt 2)(), 1993
PMID: 8343116
Three-dimensional reconstruction of caldesmon-containing smooth muscle thin filaments.
Vibert P, Craig R, Lehman W., J. Cell Biol. 123(2), 1993
PMID: 8408215
Secondary structure and thermal stability of caldesmon and its domains.
Graceffa P, Jancso A., Arch. Biochem. Biophys. 307(1), 1993
PMID: 8239659
Phosphorylation of aorta caldesmon by endogenous proteolytic fragments of protein kinase C.
Vorotnikov AV, Gusev NB, Hua S, Collins JH, Redwood CS, Marston SB., J. Muscle Res. Cell. Motil. 15(1), 1994
PMID: 8182108
Turkey gizzard caldesmon molecular weight and shape.
Stafford WF, Chalovich JM, Graceffa P., Arch. Biochem. Biophys. 313(1), 1994
PMID: 8053685
Phosphorylation of caldesmon by smooth-muscle casein kinase II.
Sutherland C, Renaux BS, McKay DJ, Walsh MP., J. Muscle Res. Cell. Motil. 15(4), 1994
PMID: 7806638
Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications.
Garcia de la Torre JG, Bloomfield VA., Q. Rev. Biophys. 14(1), 1981
PMID: 7025081
Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.
Sobue K, Muramoto Y, Fujita M, Kakiuchi S., Proc. Natl. Acad. Sci. U.S.A. 78(9), 1981
PMID: 6946503
The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments.
Dabrowska R, Goch A, Galazkiewicz B, Osinska H., Biochim. Biophys. Acta 842(1), 1985
PMID: 2931121
Functional domain of caldesmon.
Szpacenko A, Dabrowska R., FEBS Lett. 202(2), 1986
PMID: 2941315
The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.
Smith CW, Pritchard K, Marston SB., J. Biol. Chem. 262(1), 1987
PMID: 2947901
Domain mapping of chicken gizzard caldesmon.
Fujii T, Imai M, Rosenfeld GC, Bryan J., J. Biol. Chem. 262(6), 1987
PMID: 2434491
Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
Marqusee S, Baldwin RL., Proc. Natl. Acad. Sci. U.S.A. 84(24), 1987
PMID: 3122208
Binding of caldesmon to smooth muscle myosin.
Ikebe M, Reardon S., J. Biol. Chem. 263(7), 1988
PMID: 3257755
Caldesmon and thin-filament regulation of muscle contraction.
Chalovich JM., Cell Biophys. 12(), 1988
PMID: 2453287
Caldesmon. Molecular weight and subunit composition by analytical ultracentrifugation.
Graceffa P, Wang CL, Stafford WF., J. Biol. Chem. 263(28), 1988
PMID: 3170543
Landmark mapping: a general method for localizing cysteine residues within a protein.
Nefsky B, Bretscher A., Proc. Natl. Acad. Sci. U.S.A. 86(10), 1989
PMID: 2726736
Characteristics of the myosin and tropomyosin binding regions of the smooth muscle caldesmon.
Katayama E, Horiuchi KY, Chacko S., Biochem. Biophys. Res. Commun. 160(3), 1989
PMID: 2525036
Cloning and expression of a smooth muscle caldesmon.
Bryan J, Imai M, Lee R, Moore P, Cook RG, Lin WG., J. Biol. Chem. 264(23), 1989
PMID: 2760048
What is latch? New ideas about tonic contraction in smooth muscle.
Marston SB., J. Muscle Res. Cell. Motil. 10(2), 1989
PMID: 2668329
Primary structure and functional expression of h-caldesmon complementary DNA.
Hayashi K, Kanda K, Kimizuka F, Kato I, Sobue K., Biochem. Biophys. Res. Commun. 164(1), 1989
PMID: 2803315
Turkey gizzard caldesmon: molecular weight determination and calmodulin binding studies.
Malencik DA, Ausio J, Byles CE, Modrell B, Anderson SR., Biochemistry 28(20), 1989
PMID: 2605180
Localization of the calmodulin- and the actin-binding sites of caldesmon.
Wang CL, Wang LW, Xu SA, Lu RC, Saavedra-Alanis V, Bryan J., J. Biol. Chem. 266(14), 1991
PMID: 2026616

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9017208
PubMed | Europe PMC

Suchen in

Google Scholar