Actin-titin interaction in cardiac myofibrils: Probing a physiological role

Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M (1997)
BIOPHYSICAL JOURNAL 73(2): 905-919.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract / Notes
The high stiffness of relaxed cardiac myofibrils is explainable mainly by the expression of a short-length titin (connectin), the giant elastic protein of the vertebrate myofibrillar cytoskeleton. However, additional molecular features could account for this high stiffness, such as interaction between titin and actin, which has previously been reported in vitro. To probe this finding for a possible physiological significance, isolated myofibrils from rat heart were subjected to selective removal of actin filaments by a calcium-independent gelsolin fragment, and the ''passive'' stiffness of the specimens was recorded. Upon actin extraction, stiffness decreased by nearly 60%, and to a similar degree after high-salt extraction of thick filaments. Thus actin-titin association indeed contributes to the stiffness of resting cardiac muscle. To identify possible sites of association, we employed a combination of different techniques. Immunofluorescence microscopy revealed that actin extraction increased the extensibility of the previously stiff Z-disc-flanking titin region. Actin-titin interaction within this region was confirmed in in vitro cosedimentation assays, in which multimodule recombinant titin fragments were tested for their ability to interact with F-actin. By contrast, such assays showed no actin-titin-binding propensity for sarcomeric regions outside the Z-disc comb. Accordingly, the results of mechanical measurements demonstrated that competition with native titin by recombinant titin fragments from Z-disc-remote, I-band or A-band regions did not affect passive myofibril stiffness. These results indicate that it is actin-titin association near the Z-disc, but not along the remainder of the sarcomere, that helps to anchor the titin molecule at its N-terminus and maintain a high stiffness of the relaxed cardiac myofibril.
Publishing Year
ISSN
PUB-ID

Cite this

Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M. Actin-titin interaction in cardiac myofibrils: Probing a physiological role. BIOPHYSICAL JOURNAL. 1997;73(2):905-919.
Linke, W. A., Ivemeyer, M., Labeit, S., Hinssen, H., Ruegg, J. C., & Gautel, M. (1997). Actin-titin interaction in cardiac myofibrils: Probing a physiological role. BIOPHYSICAL JOURNAL, 73(2), 905-919. doi:10.1016/S0006-3495(97)78123-2
Linke, W. A., Ivemeyer, M., Labeit, S., Hinssen, H., Ruegg, J. C., and Gautel, M. (1997). Actin-titin interaction in cardiac myofibrils: Probing a physiological role. BIOPHYSICAL JOURNAL 73, 905-919.
Linke, W.A., et al., 1997. Actin-titin interaction in cardiac myofibrils: Probing a physiological role. BIOPHYSICAL JOURNAL, 73(2), p 905-919.
W.A. Linke, et al., “Actin-titin interaction in cardiac myofibrils: Probing a physiological role”, BIOPHYSICAL JOURNAL, vol. 73, 1997, pp. 905-919.
Linke, W.A., Ivemeyer, M., Labeit, S., Hinssen, H., Ruegg, J.C., Gautel, M.: Actin-titin interaction in cardiac myofibrils: Probing a physiological role. BIOPHYSICAL JOURNAL. 73, 905-919 (1997).
Linke, WA, Ivemeyer, M, Labeit, S, Hinssen, Horst, Ruegg, JC, and Gautel, M. “Actin-titin interaction in cardiac myofibrils: Probing a physiological role”. BIOPHYSICAL JOURNAL 73.2 (1997): 905-919.
This data publication is cited in the following publications:
This publication cites the following data publications:

75 Citations in Europe PMC

Data provided by Europe PubMed Central.

PEVK domain of titin: an entropic spring with actin-binding properties.
Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M, Fernandez JM., J Struct Biol 137(1-2), 2002
PMID: 12064946
Role of titin in vertebrate striated muscle.
Tskhovrebova L, Trinick J., Philos Trans R Soc Lond B Biol Sci 357(1418), 2002
PMID: 11911777
Titin and the sarcomere symmetry paradox.
Liversage AD, Holmes D, Knight PJ, Tskhovrebova L, Trinick J., J Mol Biol 305(3), 2001
PMID: 11152599
Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
Minajeva A, Kulke M, Fernandez JM, Linke WA., Biophys J 80(3), 2001
PMID: 11222304
Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle.
Kulke M, Neagoe C, Kolmerer B, Minajeva A, Hinssen H, Bullard B, Linke WA., J Cell Biol 154(5), 2001
PMID: 11535621
Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1.
Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H., Biophys J 81(4), 2001
PMID: 11566799
Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein.
Weins A, Schwarz K, Faul C, Barisoni L, Linke WA, Mundel P., J Cell Biol 155(3), 2001
PMID: 11673475
Targeting of cardiac muscle titin fragments to the Z-bands and dense bodies of living muscle and non-muscle cells.
Ayoob JC, Turnacioglu KK, Mittal B, Sanger JM, Sanger JW., Cell Motil Cytoskeleton 45(1), 2000
PMID: 10618168
Role of desmin filaments in chicken cardiac myofibrillogenesis.
Wang SM, Huang YS, Wu JC, Tseng YZ., J Cell Biochem 77(4), 2000
PMID: 10771519
The titin cDNA sequence and partial genomic sequences: insights into the molecular genetics, cell biology and physiology of the titin filament system.
Kolmerer B, Witt CC, Freiburg A, Millevoi S, Stier G, Sorimachi H, Pelin K, Carrier L, Schwartz K, Labeit D, Gregorio CC, Linke WA, Labeit S., Rev Physiol Biochem Pharmacol 138(), 1999
PMID: 10396137
The physiological role of titin in striated muscle.
Horowits R., Rev Physiol Biochem Pharmacol 138(), 1999
PMID: 10396138
Association of kettin with actin in the Z-disc of insect flight muscle.
van Straaten M, Goulding D, Kolmerer B, Labeit S, Clayton J, Leonard K, Bullard B., J Mol Biol 285(4), 1999
PMID: 9917396
Muscle assembly: a titanic achievement?
Gregorio CC, Granzier H, Sorimachi H, Labeit S., Curr Opin Cell Biol 11(1), 1999
PMID: 10047523
3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths.
Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS., J Physiol 517 ( Pt 3)(), 1999
PMID: 10358122
Modularity and homology: modelling of the type II module family from titin.
Fraternali F, Pastore A., J Mol Biol 290(2), 1999
PMID: 10390355
I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure.
Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC., J Cell Biol 146(3), 1999
PMID: 10444071
Defining actin filament length in striated muscle: rulers and caps or dynamic stability?
Littlefield R, Fowler VM., Annu Rev Cell Dev Biol 14(), 1998
PMID: 9891791
Striational autoantibodies in myasthenia gravis patients recognize I-band titin epitopes.
Lübke E, Freiburg A, Skeie GO, Kolmerer B, Labeit S, Aarli JA, Gilhus NE, Wollmann R, Wussling M, Rüegg JC, Linke WA., J Neuroimmunol 81(1-2), 1998
PMID: 9521611
Human autoantibodies reveal titin as a chromosomal protein.
Machado C, Sunkel CE, Andrew DJ., J Cell Biol 141(2), 1998
PMID: 9548712
Binding of a native titin fragment to actin is regulated by PIP2.
Astier C, Raynaud F, Lebart MC, Roustan C, Benyamin Y., FEBS Lett 429(1), 1998
PMID: 9657390
Nature of PEVK-titin elasticity in skeletal muscle.
Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B., Proc Natl Acad Sci U S A 95(14), 1998
PMID: 9653138
The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity.
Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S., J Cell Biol 143(4), 1998
PMID: 9817758

63 References

Data provided by Europe PubMed Central.

Stiffness and shortening changes in myofilament-extracted rat cardiac myocytes.
Roos KP, Brady AJ., Am. J. Physiol. 256(2 Pt 2), 1989
PMID: 2916687
Differential response of stress fibers and myofibrils to gelsolin.
Sanger JM, Mittal B, Wegner A, Jockusch BM, Sanger JW., Eur. J. Cell Biol. 43(3), 1987
PMID: 3040411
A survey of interactions made by the giant protein titin.
Soteriou A, Gamage M, Trinick J., J. Cell. Sci. 104 ( Pt 1)(), 1993
PMID: 8449991
The mechanically active domain of titin in cardiac muscle.
Trombitas K, Jin JP, Granzier H., Circ. Res. 77(4), 1995
PMID: 7554133
Elastic properties of connecting filaments along the sarcomere.
Trombitas K, Pollack GH., Adv. Exp. Med. Biol. 332(), 1993
PMID: 8109381
Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension.
Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R., Proc. Natl. Acad. Sci. U.S.A. 88(16), 1991
PMID: 1714586
Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R., Biophys. J. 64(4), 1993
PMID: 8494977
Titin: major myofibrillar components of striated muscle.
Wang K, McClure J, Tu A., Proc. Natl. Acad. Sci. U.S.A. 76(8), 1979
PMID: 291034
A 11.5-kb 5'-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z line binding region.
Yajima H, Ohtsuka H, Kawamura Y, Kume H, Murayama T, Abe H, Kimura S, Maruyama K., Biochem. Biophys. Res. Commun. 223(1), 1996
PMID: 8660363

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 9251807
PubMed | Europe PMC

Search this title in

Google Scholar