Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth

Uhde C, Schmidt R, Jording D, Selbitschka W, Pühler A (1997)
JOURNAL OF BACTERIOLOGY 179(20): 6432-6440.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
A screening method was used to identify Sinorhizobium meliloti mutants which are affected in stationary-phase survival, Of 20,000 individual colonies mutagenized with transposon Tn5-B20, 10 mutant strains which showed poor or no survival in the stationary phase were identified. Analyses of expression patterns of the promoterless lacZ genes in the mutant strains revealed individual induction patterns, Most strains were induced in stationary phase as well as under carbon limitation and in pure H2O, but none of the mutants was induced under heat, alkali stress conditions, or low oxygen tension, Plant inoculation tests revealed that the symbiotic proficiency of the mutants was not affected. Two mutants, however, showed gene induction not only in the stationary phase under free-living conditions but also in the bacteroid state, A long-term starvation test was carried out to examine the ability of the 10 mutants to survive prolonged stationary-phase conditions, All mutants showed a clear decrease in the colony-forming ability under the chosen experimental conditions, Staining with green and red fluorescent nucleic acid stain showed that the mutants fell into two different classes, Seven mutants died during stationary phase; the three other mutants remained viable but did not resume growth after prolonged starvation, Five of the ten Tn5-B20 insertions were cloned from the genomes of the mutant strains. Nucleotide sequence analyses established that the transposon had inserted in five distinctive genes. Database searches revealed that four of the tagged loci corresponded to already characterized genes whose gene products are involved in important cellular processes such as amino acid metabolism or aerobic respiration.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF BACTERIOLOGY
Band
179
Ausgabe
20
Seite(n)
6432-6440
ISSN
PUB-ID

Zitieren

Uhde C, Schmidt R, Jording D, Selbitschka W, Pühler A. Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. JOURNAL OF BACTERIOLOGY. 1997;179(20):6432-6440.
Uhde, C., Schmidt, R., Jording, D., Selbitschka, W., & Pühler, A. (1997). Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. JOURNAL OF BACTERIOLOGY, 179(20), 6432-6440.
Uhde, C., Schmidt, R., Jording, D., Selbitschka, W., and Pühler, A. (1997). Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. JOURNAL OF BACTERIOLOGY 179, 6432-6440.
Uhde, C., et al., 1997. Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. JOURNAL OF BACTERIOLOGY, 179(20), p 6432-6440.
C. Uhde, et al., “Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth”, JOURNAL OF BACTERIOLOGY, vol. 179, 1997, pp. 6432-6440.
Uhde, C., Schmidt, R., Jording, D., Selbitschka, W., Pühler, A.: Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth. JOURNAL OF BACTERIOLOGY. 179, 6432-6440 (1997).
Uhde, C, Schmidt, R, Jording, Doris, Selbitschka, Werner, and Pühler, Alfred. “Stationary-phase mutants of Sinorhizobium meliloti are impaired in stationary-phase survival or in recovery to logarithmic growth”. JOURNAL OF BACTERIOLOGY 179.20 (1997): 6432-6440.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The spliceosomal intron of the rolA gene of agrobacterium rhizogenes is a prokaryotic promoter.
Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A., Mol Microbiol 35(6), 2000
PMID: 10760134

37 References

Daten bereitgestellt von Europe PubMed Central.

How do non-differentiating bacteria adapt to starvation?
Kjelleberg S, Albertson N, Flardh K, Holmquist L, Jouper-Jaan A, Marouga R, Ostling J, Svenblad B, Weichart D., Antonie Van Leeuwenhoek 63(3-4), 1993
PMID: 8279828
Life after log.
Siegele DA, Kolter R., J. Bacteriol. 174(2), 1992
PMID: 1729229
The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation.
Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA., Mol. Microbiol. 5(1), 1991
PMID: 1901616
surA, an Escherichia coli gene essential for survival in stationary phase.
Tormo A, Almiron M, Kolter R., J. Bacteriol. 172(8), 1990
PMID: 2165476
An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK.
Colonna-Romano S, Arnold W, Schluter A, Boistard P, Puhler A, Priefer UB., Mol. Gen. Genet. 223(1), 1990
PMID: 2175385
Identification of protein coding regions by database similarity search.
Gish W, States DJ., Nat. Genet. 3(3), 1993
PMID: 8485583
Starvation-induced cross protection against osmotic challenge in Escherichia coli.
Jenkins DE, Chaisson SA, Matin A., J. Bacteriol. 172(5), 1990
PMID: 2185233
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028
Genetic basis of starvation survival in nondifferentiating bacteria.
Matin A, Auger EA, Blum PH, Schultz JE., Annu. Rev. Microbiol. 43(), 1989
PMID: 2478072
Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria.
Simon R, O'Connell M, Labes M, Puhler A., Meth. Enzymol. 118(), 1986
PMID: 3005803
Microbial ecology of the terrestrial subsurface.
Ghiorse WC, Wilson JT., Adv. Appl. Microbiol. 33(), 1988
PMID: 3041739
Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli.
Jenkins DE, Schultz JE, Matin A., J. Bacteriol. 170(9), 1988
PMID: 3045081
Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival.
Groat RG, Schultz JE, Zychlinsky E, Bockman A, Matin A., J. Bacteriol. 168(2), 1986
PMID: 3536847
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
General transduction in Rhizobium meliloti.
Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER., J. Bacteriol. 159(1), 1984
PMID: 6330024
Isolation of a carbon starvation regulatory mutant in a marine Vibrio strain.
Ostling J, Flardh K, Kjelleberg S., J. Bacteriol. 177(23), 1995
PMID: 7592494
The trials and tribulations of growth arrest.
Nystrom T., Trends Microbiol. 3(4), 1995
PMID: 7613753
The role of the sigma factor sigma S (KatF) in bacterial global regulation.
Loewen PC, Hengge-Aronis R., Annu. Rev. Microbiol. 48(), 1994
PMID: 7826018
The stationary phase of the bacterial life cycle.
Kolter R, Siegele DA, Tormo A., Annu. Rev. Microbiol. 47(), 1993
PMID: 8257118
Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956.
Nystrom T, Flardh K, Kjelleberg S., J. Bacteriol. 172(12), 1990
PMID: 1701428

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9335293
PubMed | Europe PMC

Suchen in

Google Scholar