Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR

Rüberg S, Pühler A, Becker A (1999)
MICROBIOLOGY-UK 145(3): 603-611.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
The soil bacterium Sinorhizobium meliloti (Rhizobium meliloti) has the ability to produce the alternative exopolysaccharide galactoglucan (EPS II) in addition to succinoglycan (EPS I). In the wild-type strain EPS II production is induced by phosphate-limiting conditions or by extra copies of the exp gene cluster. Based on similarities to transcriptional regulators of the MarR family, an additional putative regulatory gene, expG, was identified in the exp gene cluster. Using exp-laci! transcriptional fusions, a stimulating effect of extra copies of this expG gene on the transcription of all exp complementation groups was determined. Phosphate limitation also resulted in increased expression of the exp-lacZ fusions. This increase was reduced in strains characterized by a deletion of expG. The previously reported high level of exp gene transcription in a mucR mutant was further elevated under phosphate-limiting conditions. The expA, expD, expG and expE promoters contain sequences with similarities to the PHO box known as the PhoB-binding site in phosphate-regulated promoters in Escherichia coli. The S. meliloti phoB gene was required for the activation of exp gene expression under phosphate limitation, but not for induction of exp expression by MucR or ExpG.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Rüberg S, Pühler A, Becker A. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR. MICROBIOLOGY-UK. 1999;145(3):603-611.
Rüberg, S., Pühler, A., & Becker, A. (1999). Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR. MICROBIOLOGY-UK, 145(3), 603-611. doi:10.1099/13500872-145-3-603
Rüberg, S., Pühler, A., and Becker, A. (1999). Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR. MICROBIOLOGY-UK 145, 603-611.
Rüberg, S., Pühler, A., & Becker, A., 1999. Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR. MICROBIOLOGY-UK, 145(3), p 603-611.
S. Rüberg, A. Pühler, and A. Becker, “Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR”, MICROBIOLOGY-UK, vol. 145, 1999, pp. 603-611.
Rüberg, S., Pühler, A., Becker, A.: Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR. MICROBIOLOGY-UK. 145, 603-611 (1999).
Rüberg, Silvia, Pühler, Alfred, and Becker, Anke. “Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phasphate-dependent regulator PhoB and the proteins ExpG and MucR”. MICROBIOLOGY-UK 145.3 (1999): 603-611.
This data publication is cited in the following publications:
This publication cites the following data publications:

38 Citations in Europe PMC

Data provided by Europe PubMed Central.

Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.
Yuan ZC, Zaheer R, Morton R, Finan TM., Nucleic Acids Res 34(9), 2006
PMID: 16717279
RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways.
Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S., J Bacteriol 188(24), 2006
PMID: 17028277
Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii.
Wielbo J, Mazur A, Król JE, Marczak M, Skorupska A., Can J Microbiol 50(3), 2004
PMID: 15105887
Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti.
Marketon MM, Glenn SA, Eberhard A, González JE., J Bacteriol 185(1), 2003
PMID: 12486070
MucR and mucS activate exp genes transcription and galactoglucan production in Sinorhizobium meliloti EFB1.
Lloret J, Martín M, Oruezabal RI, Bonilla I, Rivilla R., Mol Plant Microbe Interact 15(1), 2002
PMID: 11843303
Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti.
Mendrygal KE, González JE., J Bacteriol 182(3), 2000
PMID: 10633091

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10217494
PubMed | Europe PMC

Search this title in

Google Scholar