Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli

Dusch N, Pühler A, Kalinowski J (1999)
Appl Environ Microbiol 65(4): 1530-1539.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
The Corynebacterium glutamicum panD gene was identified by functional complementation of an Escherichia coli panD mutant strain. Sequence analysis revealed that the coding region of panD comprises 411 bp and specifies a protein of 136 amino acid residues with a deduced molecular mass of 14.1 kDa. A defined C. glutamicum panD mutant completely lacked L-aspartate-alpha-decarboxylase activity and exhibited beta-alanine auxotrophy, The C. glutamicum panD (panD(C.g.)) as well as the E. coli panD (panD(E.c.)) genes were cloned into a bifunctional expression plasmid to allow gene analysis in C. glutamicum as well as in E. coli. The enhanced expression of panD(C.g.) in C. glutamicum resulted in the formation of two distinct proteins In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, leading to the assumption that the panD(C.g.) gene product is proteolytically processed into two subunits, By increased expression of panD(C.g.) in C. glutamicum, the activity of L-aspartate-alpha-decarboxylase was 288-fold increased, whereas the panD(E.c.) gene resulted only in a 4-fold enhancement. The similar experiment performed in E. coli revealed that panD(C.g.) achieved a 41-fold increase and that panD(E.c.) achieved a 3-fold increase of enzyme activity. The effect of the panD(C.g.) and panD(E.c.) gene expression in E, coli was studied with a view to pantothenate accumulation. Only by expression of the panD(C.g.) gene was sufficient p-alanine produced to abolish its limiting effect on pantothenate production. In cultures expressing the panD(E.c.) gene, the maximal pantothenate production was still dependent on external beta-alanine supplementation. The enhanced expression of panD(C.g.) in E. coli yielded the highest amount of pantothenate in the culture medium, with a specific productivity of 140 ng of pantothenate mg (dry weight)(-1) h(-1).
Publishing Year
ISSN
PUB-ID

Cite this

Dusch N, Pühler A, Kalinowski J. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol. 1999;65(4):1530-1539.
Dusch, N., Pühler, A., & Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol, 65(4), 1530-1539.
Dusch, N., Pühler, A., and Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65, 1530-1539.
Dusch, N., Pühler, A., & Kalinowski, J., 1999. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol, 65(4), p 1530-1539.
N. Dusch, A. Pühler, and J. Kalinowski, “Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli”, Appl Environ Microbiol, vol. 65, 1999, pp. 1530-1539.
Dusch, N., Pühler, A., Kalinowski, J.: Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol. 65, 1530-1539 (1999).
Dusch, N, Pühler, Alfred, and Kalinowski, Jörn. “Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli”. Appl Environ Microbiol 65.4 (1999): 1530-1539.
This data publication is cited in the following publications:
This publication cites the following data publications:

38 Citations in Europe PMC

Data provided by Europe PubMed Central.

Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION.
Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Herve M, Arthur M, Houssin C, Mengin-Lecreulx D., J. Biol. Chem. 290(21), 2015
PMID: 25847251
Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
Szokol J, Rucka L, Simcikova M, Halada P, Nesvera J, Patek M., Appl. Microbiol. Biotechnol. 98(19), 2014
PMID: 24938209
Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum.
Kang MK, Eom JH, Kim Y, Um Y, Woo HM., Biotechnol. Lett. 36(10), 2014
PMID: 24930112
β-alanine biosynthesis in Methanocaldococcus jannaschii.
Wang Y, Xu H, White RH., J. Bacteriol. 196(15), 2014
PMID: 24891443
Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.
Shen Y, Zhao L, Li Y, Zhang L, Shi G., Biotechnol. Lett. 36(8), 2014
PMID: 24737081
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.
Huc E, de Sousa-D'Auria C, de la Sierra-Gallay IL, Salmeron C, van Tilbeurgh H, Bayan N, Houssin C, Daffe M, Tropis M., J. Bacteriol. 195(18), 2013
PMID: 23852866
A deficiency in arabinogalactan biosynthesis affects Corynebacterium glutamicum mycolate outer membrane stability.
Bou Raad R, Meniche X, de Sousa-d'Auria C, Chami M, Salmeron C, Tropis M, Labarre C, Daffe M, Houssin C, Bayan N., J. Bacteriol. 192(11), 2010
PMID: 20363942
Biosynthesis of Pantothenic Acid and Coenzyme A.
Leonardi R, Jackowski S., EcoSal Plus 2(2), 2007
PMID: 26443589

41 References

Data provided by Europe PubMed Central.

A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria
Simon R, Priefer U, Pühler A., 1983
Dihydrouracil as a growth factor for mutant strains of Escherichia coli.
SLOTNICK IJ, WEINFELD H., J. Bacteriol. 74(2), 1957
PMID: 13475206

Smith R., 1988
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Use of synthetic oligodeoxyribonucleotides for the isolation of specific cloned DNA sequences
Suggs S, Hirose T, Miyake T, Kawashima E, Johnson M, Itakura K, Wallace R., 1981
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Acyl group transfer
Vagelos P., 1973
Pyruvoyl-dependent enzymes.
van Poelje PD, Snell EE., Annu. Rev. Biochem. 59(), 1990
PMID: 2197977
Acetylornithinase of Escherichia coli: partial purification and some properties.
VOGEL HJ, BONNER DM., J. Biol. Chem. 218(1), 1956
PMID: 13278318
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10103247
PubMed | Europe PMC

Search this title in

Google Scholar