The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin

Coles M, Diercks T, Muehlenweg B, Bartsch S, Zolzer V, Tschesche H, Kessler H (1999)
JOURNAL OF MOLECULAR BIOLOGY 289(1): 139-157.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract / Notes
Human neutrophil gelatinase-associated lipocalin (HNGAL) is a member of the lipocalin family of extracellular proteins that function as transporters of small, hydrophobic molecules. HNGAL, a component of human blood granulocytes, binds bacterially derived formyl peptides that act as chemotactic agents and induce leukocyte granule discharge. HNGAL also forms a complex with the proenzyme form of matrix metalloproteinase-9 (pro-MMP-9, or progelatinase B) via an intermolecular disulphide bridge. This association allows the subsequent formation of ternary and quaternary metalloproteinase/inhibitor complexes that vary greatly in their metalloproteinase activities. The structure and dynamics of apo-HNGAL have been determined by NMR spectroscopy. Simulated annealing calculations yielded a set of 20 convergent structures with an average backbone RMSD from mean coordinate positions of 0.79(+/-0.13) Angstrom over secondary structure elements. The overall rotational correlation time (13.3 ns) derived from N-15 relaxation data is consistent with a monomeric protein of the size of HNGAL (179 residues) under the experimental conditions (1.4 mM protein, pH 6.0, 24.5 degrees C). The structure features an eight stranded antiparallel beta-barrel, typical of the lipocalin family. One end of the barrel is open, providing access to the binding site within the barrel cavity, while the other is closed by a short 3(10)-helix. The free cysteine residue required for association with pro-MMP-9 lies in an inter-strand loop at the closed end of the barrel. The structure provides a detailed model of the ligand-binding site and has led to the proposal of a site for pro-MMP-9 association. Dynamic data correlate well with structural features, which has allowed us to investigate a mechanism by which a cell-surface receptor might distinguish between apo and holo-HNGAL through conformational changes at the open end of the barrel. (C) 1999 Academic Press.
Publishing Year
ISSN
PUB-ID

Cite this

Coles M, Diercks T, Muehlenweg B, et al. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY. 1999;289(1):139-157.
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., & Kessler, H. (1999). The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY, 289(1), 139-157. doi:10.1006/jmbi.1999.2755
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., and Kessler, H. (1999). The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY 289, 139-157.
Coles, M., et al., 1999. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY, 289(1), p 139-157.
M. Coles, et al., “The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin”, JOURNAL OF MOLECULAR BIOLOGY, vol. 289, 1999, pp. 139-157.
Coles, M., Diercks, T., Muehlenweg, B., Bartsch, S., Zolzer, V., Tschesche, H., Kessler, H.: The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. JOURNAL OF MOLECULAR BIOLOGY. 289, 139-157 (1999).
Coles, M, Diercks, T, Muehlenweg, B, Bartsch, S, Zolzer, V, Tschesche, Harald, and Kessler, H. “The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin”. JOURNAL OF MOLECULAR BIOLOGY 289.1 (1999): 139-157.
This data publication is cited in the following publications:
This publication cites the following data publications:

39 Citations in Europe PMC

Data provided by Europe PubMed Central.

Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells.
Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY., Int J Biochem Cell Biol 36(5), 2004
PMID: 15006646
Comparison of (13)C(alpha)H and (15)NH backbone dynamics in protein GB1.
Idiyatullin D, Nesmelova I, Daragan VA, Mayo KH., Protein Sci 12(5), 2003
PMID: 12717014
Methyl dynamics in crystalline amino acids: MD and NMR.
Chatfield DC, Augsten A, D'Cunha C, Wong SE., J Comput Chem 24(9), 2003
PMID: 12759905
Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBP beta-dependent lipocalin gene.
Hartl M, Matt T, Schüler W, Siemeister G, Kontaxis G, Kloiber K, Konrat R, Bister K., J Mol Biol 333(1), 2003
PMID: 14516741
The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK., Mol Cell 10(5), 2002
PMID: 12453412
Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis.
Duan J, Dahlbäck B, Villoutreix BO., FEBS Lett 499(1-2), 2001
PMID: 11418126
Role of conserved residues in structure and stability: tryptophans of human serum retinol-binding protein, a model for the lipocalin superfamily.
Greene LH, Chrysina ED, Irons LI, Papageorgiou AC, Acharya KR, Brew K., Protein Sci 10(11), 2001
PMID: 11604536
Structural characterization of the oligosaccharide chains of human alpha1-microglobulin from urine and amniotic fluid.
Amoresano A, Minchiotti L, Cosulich ME, Campagnoli M, Pucci P, Andolfo A, Gianazza E, Galliano M., Eur J Biochem 267(7), 2000
PMID: 10727951
The lipocalin protein family: structural and sequence overview.
Flower DR, North AC, Sansom CE., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058743
Experimentally determined lipocalin structures.
Flower DR., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058746
Tick histamine-binding proteins: lipocalins with a second binding cavity.
Paesen GC, Adams PL, Nuttall PA, Stuart DL., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058751
Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse.
Kjeldsen L, Cowland JB, Borregaard N., Biochim Biophys Acta 1482(1-2), 2000
PMID: 11058768

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10339412
PubMed | Europe PMC

Search this title in

Google Scholar