On the counting function of primitive sets of integers

Ahlswede R, Khachatrian LH, Sarkozy A (1999)
Journal of Number Theory 79(2): 330-344.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
Erdos has shown that for a primitive set A subset of N Sigma(a is an element of A) 1/(a log a) < const. This implies that A(x)
Publishing Year
ISSN
PUB-ID

Cite this

Ahlswede R, Khachatrian LH, Sarkozy A. On the counting function of primitive sets of integers. Journal of Number Theory. 1999;79(2):330-344.
Ahlswede, R., Khachatrian, L. H., & Sarkozy, A. (1999). On the counting function of primitive sets of integers. Journal of Number Theory, 79(2), 330-344.
Ahlswede, R., Khachatrian, L. H., and Sarkozy, A. (1999). On the counting function of primitive sets of integers. Journal of Number Theory 79, 330-344.
Ahlswede, R., Khachatrian, L.H., & Sarkozy, A., 1999. On the counting function of primitive sets of integers. Journal of Number Theory, 79(2), p 330-344.
R. Ahlswede, L.H. Khachatrian, and A. Sarkozy, “On the counting function of primitive sets of integers”, Journal of Number Theory, vol. 79, 1999, pp. 330-344.
Ahlswede, R., Khachatrian, L.H., Sarkozy, A.: On the counting function of primitive sets of integers. Journal of Number Theory. 79, 330-344 (1999).
Ahlswede, Rudolf, Khachatrian, Levon H., and Sarkozy, Andras. “On the counting function of primitive sets of integers”. Journal of Number Theory 79.2 (1999): 330-344.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar