Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis

Grothaus M, Streit L (1999)
REPORTS ON MATHEMATICAL PHYSICS 44(3): 381-405.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
A mathematically rigorous realization of Feynman integrals is given. The construction works for quadratic actions (there is only a restriction to limited time intervals). These techniques enable the calculation of the semi-classical approximation for a given Feynman propagator. Finally, delta sequences in Gaussian analysis are presented and their connection to semi-classical approximation is discussed.
Erscheinungsjahr
Zeitschriftentitel
REPORTS ON MATHEMATICAL PHYSICS
Band
44
Zeitschriftennummer
3
Seite
381-405
ISSN
PUB-ID

Zitieren

Grothaus M, Streit L. Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. REPORTS ON MATHEMATICAL PHYSICS. 1999;44(3):381-405.
Grothaus, M., & Streit, L. (1999). Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. REPORTS ON MATHEMATICAL PHYSICS, 44(3), 381-405. doi:10.1016/S0034-4877(00)87246-8
Grothaus, M., and Streit, L. (1999). Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. REPORTS ON MATHEMATICAL PHYSICS 44, 381-405.
Grothaus, M., & Streit, L., 1999. Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. REPORTS ON MATHEMATICAL PHYSICS, 44(3), p 381-405.
M. Grothaus and L. Streit, “Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis”, REPORTS ON MATHEMATICAL PHYSICS, vol. 44, 1999, pp. 381-405.
Grothaus, M., Streit, L.: Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. REPORTS ON MATHEMATICAL PHYSICS. 44, 381-405 (1999).
Grothaus, M, and Streit, Ludwig. “Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis”. REPORTS ON MATHEMATICAL PHYSICS 44.3 (1999): 381-405.