Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII

Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H (2000)
JOURNAL OF BIOLOGICAL CHEMISTRY 275(42): 33008-33013.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
The effects of plasma proteins on controlling the activity of matrix metalloproteinases (MMPs, matrixins) have been the focus of numerous studies, although only a few have examined the influence of matrixins on plasma proteins. Recently, it has been shown that MMPs may play a role in the degradation of fibrin, We have now investigated the role of collagenase-a (MMP-8), macrophage elastase (MMP-12), collagenase-3 (MMP-13), and membrane type 1-matrix metalloproteinase (MT1-MMP, MMMP-14) in the degradation of fibrinogen and Factor XII of the plasma clotting system. Our data demonstrate that the catalytic domains of MMP-8, MMP-12, MMP-13, and MMP-14 can proteolytically process fibrinogen and, with the exception of MMP-8, also inactivate Factor XII (Hageman factor). We have identified the amino termini of the major protein fragments. Cleavage of fibrinogen occurred in all chains and resulted in significantly impaired clotting. Moreover, rapid proteolytic inactivation of Factor XII (Hageman factor) by MMP-18, MMP-13, and MMP-14 was noted. These results support the hypothesis of an impaired thrombolytic potential of MMP-degraded Factor MI in vivo. MMP-induced degradation of fibrinogen supports a plasmin-independent fibrinolysis mechanism. Consequently, degradation of these proteins may be important in inflammation, atherosclerosis, and angiogenesis, all of which are known to be influenced by MMP activity.
Publishing Year
ISSN
PUB-ID

Cite this

Hiller O, Lichte A, Oberpichler A, Kocourek A, Tschesche H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. JOURNAL OF BIOLOGICAL CHEMISTRY. 2000;275(42):33008-33013.
Hiller, O., Lichte, A., Oberpichler, A., Kocourek, A., & Tschesche, H. (2000). Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(42), 33008-33013. doi:10.1074/jbc.M001836200
Hiller, O., Lichte, A., Oberpichler, A., Kocourek, A., and Tschesche, H. (2000). Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. JOURNAL OF BIOLOGICAL CHEMISTRY 275, 33008-33013.
Hiller, O., et al., 2000. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. JOURNAL OF BIOLOGICAL CHEMISTRY, 275(42), p 33008-33013.
O. Hiller, et al., “Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, 2000, pp. 33008-33013.
Hiller, O., Lichte, A., Oberpichler, A., Kocourek, A., Tschesche, H.: Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. JOURNAL OF BIOLOGICAL CHEMISTRY. 275, 33008-33013 (2000).
Hiller, O, Lichte, A, Oberpichler, A, Kocourek, A, and Tschesche, Harald. “Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII”. JOURNAL OF BIOLOGICAL CHEMISTRY 275.42 (2000): 33008-33013.
This data publication is cited in the following publications:
This publication cites the following data publications:

57 Citations in Europe PMC

Data provided by Europe PubMed Central.

Orthodontic tensile strain induces angiogenesis via type IV collagen degradation by matrix metalloproteinase-12.
Narimiya T, Wada S, Kanzaki H, Ishikawa M, Tsuge A, Yamaguchi Y, Nakamura Y., J. Periodont. Res. 52(5), 2017
PMID: 28393366
Combinatorial Screening Identifies Novel Promiscuous Matrix Metalloproteinase Activities that Lead to Inhibition of the Therapeutic Target IL-13.
Urbach C, Gordon NC, Strickland I, Lowne D, Joberty-Candotti C, May R, Herath A, Hijnen D, Thijs JL, Bruijnzeel-Koomen CA, Minter RR, Hollfelder F, Jermutus L., Chem. Biol. 22(11), 2015
PMID: 26548614
Enhanced expression of matrix metalloproteinase-12 contributes to Npc1 deficiency-induced axonal degeneration.
Liao G, Wang Z, Lee E, Moreno S, Abuelnasr O, Baudry M, Bi X., Exp. Neurol. 269(), 2015
PMID: 25864931
Expression of MMP-9 in hepatic sinusoidal obstruction syndrome induced by Gynura segetum.
Yu XZ, Ji T, Bai XL, Liang L, Wang LY, Chen W, Liang TB., J Zhejiang Univ Sci B 14(1), 2013
PMID: 23303633
Do low-molecular-weight heparins influence the healing process in colon anastomosis?
Krzesniak-Wszola N, Bielecki K, Ostrowski J., Colorectal Dis 9(6), 2007
PMID: 17573740

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 10930399
PubMed | Europe PMC

Search this title in

Google Scholar