A systematic approach to dynamic programming in bioinformatics

Giegerich R (2000)
BIOINFORMATICS 16(8): 665-677.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Motivation: Dynamic programming is probably the most popular programming method in bioinformatics. Sequence comparison gene recognition, RNA structure prediction and hundreds of other problems are solved by ever new variants of dynamic programming. Currently, the development of a successful dynamic programming algorithm is a matter of experience, talent and luck. The typical matrix recurrence relations that make up a dynamic programming algorithm are intricate to construct, and difficult to implement reliably No general problem independent guidance is available. Results: This article introduces a systematic method for constructing dynamic programming solutions to problems in biosequence analysis. By a conceptual splitting of the algorithm into a recognition and an evaluation phase, algorithm development is simplified considerably, and correct recurrences can be derived systematically. Without additional effort, the method produces an early, executable prototype expressed in a functional programming language. The method is quite generally applicable, and, while programming effort decreases, no overhead in terms of ultimate program efficiency is incurred.
Erscheinungsjahr
Zeitschriftentitel
BIOINFORMATICS
Band
16
Zeitschriftennummer
8
Seite
665-677
ISSN
eISSN
PUB-ID

Zitieren

Giegerich R. A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS. 2000;16(8):665-677.
Giegerich, R. (2000). A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS, 16(8), 665-677. doi:10.1093/bioinformatics/16.8.665
Giegerich, R. (2000). A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS 16, 665-677.
Giegerich, R., 2000. A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS, 16(8), p 665-677.
R. Giegerich, “A systematic approach to dynamic programming in bioinformatics”, BIOINFORMATICS, vol. 16, 2000, pp. 665-677.
Giegerich, R.: A systematic approach to dynamic programming in bioinformatics. BIOINFORMATICS. 16, 665-677 (2000).
Giegerich, Robert. “A systematic approach to dynamic programming in bioinformatics”. BIOINFORMATICS 16.8 (2000): 665-677.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine.
Theiler J, Yoon H, Yusim K, Picker LJ, Fruh K, Korber B., Sci Rep 6(), 2016
PMID: 27703185
Transmembrane protein alignment and fold recognition based on predicted topology.
Wang H, He Z, Zhang C, Zhang L, Xu D., PLoS One 8(7), 2013
PMID: 23894534
DOPA: GPU-based protein alignment using database and memory access optimizations.
Hasan L, Kentie M, Al-Ars Z., BMC Res Notes 4(), 2011
PMID: 21798061
Dynamic programming for single nucleotide polymorphism ID identification in systematic association studies.
Yang CH, Chuang LY, Cheng YH, Wen CH, Chang HW., Kaohsiung J Med Sci 25(4), 2009
PMID: 19502133
Design optimization methods for genomic DNA tiling arrays.
Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J, Kao MY, Snyder M, Gerstein M., Genome Res 16(2), 2006
PMID: 16365382
Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry.
Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T., Mol Cell Proteomics 5(7), 2006
PMID: 16552026
Structural analysis of aligned RNAs.
Voss B., Nucleic Acids Res 34(19), 2006
PMID: 17020924
Fast and effective prediction of microRNA/target duplexes.
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R., RNA 10(10), 2004
PMID: 15383676

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11099253
PubMed | Europe PMC

Suchen in

Google Scholar