Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis

Lagares A, Hozbor DF, Niehaus K, Otero AJLP, Lorenzen J, Arnold W, Pühler A (2001)
J Bacteriol 183(4): 1248-1258.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum by. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core related biosynthetic mannosyltransferase of R. leguminosarum by. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.
Publishing Year
ISSN
PUB-ID

Cite this

Lagares A, Hozbor DF, Niehaus K, et al. Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol. 2001;183(4):1248-1258.
Lagares, A., Hozbor, D. F., Niehaus, K., Otero, A. J. L. P., Lorenzen, J., Arnold, W., & Pühler, A. (2001). Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol, 183(4), 1248-1258.
Lagares, A., Hozbor, D. F., Niehaus, K., Otero, A. J. L. P., Lorenzen, J., Arnold, W., and Pühler, A. (2001). Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183, 1248-1258.
Lagares, A., et al., 2001. Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol, 183(4), p 1248-1258.
A. Lagares, et al., “Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis”, J Bacteriol, vol. 183, 2001, pp. 1248-1258.
Lagares, A., Hozbor, D.F., Niehaus, K., Otero, A.J.L.P., Lorenzen, J., Arnold, W., Pühler, A.: Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol. 183, 1248-1258 (2001).
Lagares, A, Hozbor, DF, Niehaus, Karsten, Otero, AJLP, Lorenzen, J, Arnold, Walter, and Pühler, Alfred. “Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis”. J Bacteriol 183.4 (2001): 1248-1258.
This data publication is cited in the following publications:
This publication cites the following data publications:

17 Citations in Europe PMC

Data provided by Europe PubMed Central.

The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendia-Claveria AM, Fedorova E, Hidalgo A, Rodriguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS ONE 8(10), 2013
PMID: 24098345
The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.
Crook MB, Draper AL, Guillory RJ, Griffitts JS., J. Bacteriol. 195(16), 2013
PMID: 23749981
Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.
Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, Masson-Boivin C., PLoS ONE 8(2), 2013
PMID: 23409119
Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA.
Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ., Mol. Plant Microbe Interact. 24(12), 2011
PMID: 22066901
Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis.
Luke NR, Sauberan SL, Russo TA, Beanan JM, Olson R, Loehfelm TW, Cox AD, St Michael F, Vinogradov EV, Campagnari AA., Infect. Immun. 78(5), 2010
PMID: 20194587
Cloning and complementation analysis of greA gene involved in salt tolerance of Sinorhizobium meliloti.
Wei W, Gu ZJ, Zhang B, Wang L, Yang SS., Ann. Microbiol. 57(2), 2007
PMID: IND43996177
Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis.
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC., Mol. Plant Microbe Interact. 18(5), 2005
PMID: 15915643
The symbiotic defect in a Sinorhizobium meliloti lipopolysaccharide mutant can be overcome by expression of other surface polysaccharides.
Hozbor DF, Pich Otero AJ, Lodeiro AR, Del Papa MF, Pistorio M, Lagares A., Res. Microbiol. 155(10), 2004
PMID: 15567281
Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra.
Laus MC, Logman TJ, Van Brussel AA, Carlson RW, Azadi P, Gao MY, Kijne JW., J. Bacteriol. 186(19), 2004
PMID: 15375143
Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis.
Fraysse N, Couderc F, Poinsot V., Eur. J. Biochem. 270(7), 2003
PMID: 12653992
Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants.
Campbell GR, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC., J. Bacteriol. 185(13), 2003
PMID: 12813079
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Campbell GR, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904442

62 References

Data provided by Europe PubMed Central.

Genes involved in the carbon metabolism of bacteriods
Ronson C, Astwood P., 1985
Regulation of symbiotic root nodule development.
Schultze M, Kondorosi A., Annu. Rev. Genet. 32(), 1998
PMID: 9928474
A broad host range mobilization system for genetic engeneering:transposon mutagenesis in gram-negative bacteria
Simon R, Priefer U, Pühler A., 1983
A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation.
Stacey G, So JS, Roth LE, Lakshmi SK B, Carlson RW., Mol. Plant Microbe Interact. 4(4), 1991
PMID: 1799697
The current status and portability of our sequence handling software.
Staden R., Nucleic Acids Res. 14(1), 1986
PMID: 3511446
Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants.
Urzainqui A, Walker GC., J. Bacteriol. 174(10), 1992
PMID: 1577707
Rapid preparation of affinity-purified lipopolysaccharide samples for electrophoretic analysis.
Valverde C, Hozbor DF, Lagares A., BioTechniques 22(2), 1997
PMID: 9043688
A simplified protocol for fast plasmid DNA sequencing.
Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W., Nucleic Acids Res. 18(4), 1990
PMID: 2315028

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 11157937
PubMed | Europe PMC

Search this title in

Google Scholar