Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses

Ragg H, Lokot T, Kamp P-B, Atchley WR, Dress A (2001)
MOLECULAR BIOLOGY AND EVOLUTION 18(4): 577-584.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
A combination of three independent biological features, genomic organization, diagnostic amino acid sites, and rare indels, was used to elucidate the phylogeny of the vertebrate serpin (serine protease inhibitor) superfamily. A strong correlation between serpin gene families displaying (1) a conserved exon-intron pattern and (2) family-specific combinations of amino acid residues at specific sites suggests that present-day vertebrates encompass six serpin gene families which evolved from primordial genes by massive intron insertion before or during early vertebrate radiation. Introns placed at homologous positions in the gene sequences in combination with diagnostic sequence characters may also constitute a reliable kinship indicator for other protein superfamilies.
Erscheinungsjahr
Zeitschriftentitel
MOLECULAR BIOLOGY AND EVOLUTION
Band
18
Zeitschriftennummer
4
Seite
577-584
ISSN
PUB-ID

Zitieren

Ragg H, Lokot T, Kamp P-B, Atchley WR, Dress A. Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. MOLECULAR BIOLOGY AND EVOLUTION. 2001;18(4):577-584.
Ragg, H., Lokot, T., Kamp, P. - B., Atchley, W. R., & Dress, A. (2001). Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. MOLECULAR BIOLOGY AND EVOLUTION, 18(4), 577-584.
Ragg, H., Lokot, T., Kamp, P. - B., Atchley, W. R., and Dress, A. (2001). Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. MOLECULAR BIOLOGY AND EVOLUTION 18, 577-584.
Ragg, H., et al., 2001. Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. MOLECULAR BIOLOGY AND EVOLUTION, 18(4), p 577-584.
H. Ragg, et al., “Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses”, MOLECULAR BIOLOGY AND EVOLUTION, vol. 18, 2001, pp. 577-584.
Ragg, H., Lokot, T., Kamp, P.-B., Atchley, W.R., Dress, A.: Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. MOLECULAR BIOLOGY AND EVOLUTION. 18, 577-584 (2001).
Ragg, Hermann, Lokot, Tatjana, Kamp, Paul-Bertram, Atchley, William R., and Dress, Andreas. “Vertebrate serpins: Construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses”. MOLECULAR BIOLOGY AND EVOLUTION 18.4 (2001): 577-584.

36 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships.
Amrine-Madsen H, Koepfli KP, Wayne RK, Springer MS., Mol Phylogenet Evol 28(2), 2003
PMID: 12878460
Serpins: structure, function and molecular evolution.
van Gent D, Sharp P, Morgan K, Kalsheker N., Int J Biochem Cell Biol 35(11), 2003
PMID: 12824063
Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded ov-serpin gene repertoire in the mouse.
Kaiserman D, Knaggs S, Scarff KL, Gillard A, Mirza G, Cadman M, McKeone R, Denny P, Cooley J, Benarafa C, Remold-O'Donnell E, Ragoussis J, Bird PI., Genomics 79(3), 2002
PMID: 11863365
Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism.
Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA., Proc Natl Acad Sci U S A 99(17), 2002
PMID: 12169660
Characterization of four murine homologs of the human ov-serpin monocyte neutrophil elastase inhibitor MNEI (SERPINB1).
Benarafa C, Cooley J, Zeng W, Bird PI, Remold-O'Donnell E., J Biol Chem 277(44), 2002
PMID: 12189154
Role of muscle endopeptidases and their inhibitors in meat tenderness.
Sentandreu MA, Coulis G, Ouali A., Trends in food science & technology. 13(12), 2002
PMID: IND43619894
Phylogenetic analyses of amino acid variation in the serpin proteins.
Atchley WR, Lokot T, Wollenberg K, Dress A, Ragg H., Mol Biol Evol 18(8), 2001
PMID: 11470841

23 References

Daten bereitgestellt von Europe PubMed Central.

Complete nucleotide sequence of the gene for human C1 inhibitor with an unusually high density of Alu elements.
Carter PE, Duponchel C, Tosi M, Fothergill JE., Eur. J. Biochem. 197(2), 1991
PMID: 2026152
Isolation of frog and chicken cDNAs encoding heparin cofactor II.
Colwell NS, Tollefsen DM., Thromb. Haemost. 80(5), 1998
PMID: 9843172
Human thyroxine-binding globulin gene: complete sequence and transcriptional regulation.
Hayashi Y, Mori Y, Janssen OE, Sunthornthepvarakul T, Weiss RE, Takeda K, Weinberg M, Seo H, Bell GI, Refetoff S., Mol. Endocrinol. 7(8), 1993
PMID: 8232304

AUTHOR UNKNOWN, Nucleic Acids Res. 10(), 1982
Organization of serpin gene-1 from Manduca sexta. Evolution of a family of alternate exons encoding the reactive site loop.
Jiang H, Wang Y, Huang Y, Mulnix AB, Kadel J, Cole K, Kanost MR., J. Biol. Chem. 271(45), 1996
PMID: 8910411
Evolutionary relationships among the serpins.
Marshall CJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 342(1300), 1993
PMID: 7904353
Renin-angiotensin system in primitive bony fishes and a holocephalian.
Nishimura H, Ogawa M, Sawyer WH., Am. J. Physiol. 224(4), 1973
PMID: 4349179
The serpin superfamily of proteinase inhibitors: structure, function, and regulation.
Potempa J, Korzus E, Travis J., J. Biol. Chem. 269(23), 1994
PMID: 8206889
Structure and expression of the gene coding for the human serpin hLS2.
Ragg H, Preibisch G., J. Biol. Chem. 263(24), 1988
PMID: 2841345
The ovalbumin family of serpin proteins.
Remold-O'Donnell E., FEBS Lett. 315(2), 1993
PMID: 8417965
RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon.
Soares MB, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A., Mol. Cell. Biol. 5(8), 1985
PMID: 2427930
Comparative studies of the juxtaglomerular apparatus.
Sokabe H, Ogawa M., Int. Rev. Cytol. 37(0), 1974
PMID: 4365425
Parsimony, likelihood, and the role of models in molecular phylogenetics.
Steel M, Penny D., Mol. Biol. Evol. 17(6), 2000
PMID: 10833190
An mRNA-type intron is present in the Rhodotorula hasegawae U2 small nuclear RNA gene.
Takahashi Y, Urushiyama S, Tani T, Ohshima Y., Mol. Cell. Biol. 13(9), 1993
PMID: 8355704
Common structural organization of the angiotensinogen and the alpha 1-antitrypsin genes.
Tanaka T, Ohkubo H, Nakanishi S., J. Biol. Chem. 259(13), 1984
PMID: 6330095

AUTHOR UNKNOWN, JOURNAL OF MOLECULAR EVOLUTION 36(), 1993

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11264410
PubMed | Europe PMC

Suchen in

Google Scholar