The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum

Meyer A, Pühler A, Niehaus K (2001)
PLANTA 213(2): 214-222.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The lipopolysaccharides (LPSXcc) of the phytopathogenic bacteria Xanthomonas campestris pv. campestris (X.c.c.) were purified from an exopolysaccharide-deficient mutant strain. The isolated LPSXcc induced an oxidative burst reaction in cell-suspension cultures of the non-host plant tobacco (Nicotiana tabacum L.) SR1. The oxidative burst elicited by LPSXcc differed from that induced by yeast elicitor (YE), a cell wall preparation of baker's yeast. The LPSXcc-induced oxidative burst was characterised by a slow increase in H2O2 production and an extended decline. Both the LPSXcc-and YE-induced oxidative bursts were completely blocked by the NAD(P)H-oxidase inhibitor diphenylene-iodonium. When LPSXcc and YE were applied in combination, a synergistic effect and the establishment of refractory states in the generation of H2O2 were observed. The amount of cytosolic calcium was measured in transgenic tobacco cell cultures carrying the apoaequorin gene by coelenterazine-derived chemiluminescence. Whereas YE induced a calcium peak within I min after application, LPSXcc induced a long-term calcium signal without transients. To our knowledge this is the first report on the elicitation of an oxidative burst in plant cell cultures by isolated LPS of a phytopathogenic bacterium.
Erscheinungsjahr
Zeitschriftentitel
PLANTA
Band
213
Ausgabe
2
Seite(n)
214-222
ISSN
eISSN
PUB-ID

Zitieren

Meyer A, Pühler A, Niehaus K. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. PLANTA. 2001;213(2):214-222.
Meyer, A., Pühler, A., & Niehaus, K. (2001). The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. PLANTA, 213(2), 214-222. doi:10.1007/s004250000493
Meyer, A., Pühler, A., and Niehaus, K. (2001). The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. PLANTA 213, 214-222.
Meyer, A., Pühler, A., & Niehaus, K., 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. PLANTA, 213(2), p 214-222.
A. Meyer, A. Pühler, and K. Niehaus, “The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum”, PLANTA, vol. 213, 2001, pp. 214-222.
Meyer, A., Pühler, A., Niehaus, K.: The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. PLANTA. 213, 214-222 (2001).
Meyer, A, Pühler, Alfred, and Niehaus, Karsten. “The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum”. PLANTA 213.2 (2001): 214-222.

64 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium.
Mohamed KH, Daniel T, Aurélien D, El-Maarouf-Bouteau H, Rafik E, Arbelet-Bonnin D, Biligui B, Florence V, Mustapha EM, François B., Plant Signal Behav 10(3), 2015
PMID: 25760034
Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants.
Wyrsch I, Domínguez-Ferreras A, Geldner N, Boller T., New Phytol 206(2), 2015
PMID: 25627577
Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors.
Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ., Pathogens 3(1), 2014
PMID: 25437615
Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art.
Vrancken K, Holtappels M, Schoofs H, Deckers T, Valcke R., Microbiology 159(pt 5), 2013
PMID: 23493063
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K., J Biotechnol 167(2), 2013
PMID: 23792782
Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing.
Monteiro RA, Balsanelli E, Tuleski T, Faoro H, Cruz LM, Wassem R, de Baura VA, Tadra-Sfeir MZ, Weiss V, DaRocha WD, Muller-Santos M, Chubatsu LS, Huergo LF, Pedrosa FO, de Souza EM., FEMS Microbiol Ecol 80(2), 2012
PMID: 22268687
Salmonella enterica strains belonging to O serogroup 1,3,19 induce chlorosis and wilting of Arabidopsis thaliana leaves.
Berger CN, Brown DJ, Shaw RK, Minuzzi F, Feys B, Frankel G., Environ Microbiol 13(5), 2011
PMID: 21349136
Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.
Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS., J Biol Chem 286(29), 2011
PMID: 21596742
Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli.
Li C, Guan Z, Liu D, Raetz CR., Proc Natl Acad Sci U S A 108(28), 2011
PMID: 21709257
Interfaces between bacterial and eukaryotic "neuroecology".
Steinberg PD, Rice SA, Campbell AH, McDougald D, Harder T., Integr Comp Biol 51(5), 2011
PMID: 21893590
Regulation and secretion of Xanthomonas virulence factors.
Büttner D, Bonas U., FEMS Microbiol Rev 34(2), 2010
PMID: 19925633
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM., Plant Cell 22(3), 2010
PMID: 20348432
Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt.
Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JD., FEMS Microbiol Lett 310(2), 2010
PMID: 20695894
Endocytosis in plant-microbe interactions.
Leborgne-Castel N, Adam T, Bouhidel K., Protoplasma 247(3-4), 2010
PMID: 20814704
Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses.
Aslam SN, Erbs G, Morrissey KL, Newman MA, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM., Mol Plant Pathol 10(3), 2009
PMID: 19400840
Plant systems for recognition of pathogen-associated molecular patterns.
Postel S, Kemmerling B., Semin Cell Dev Biol 20(9), 2009
PMID: 19540353
Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide.
Livaja M, Zeidler D, von Rad U, Durner J., Immunobiology 213(3-4), 2008
PMID: 18406364
A culture filtrate of Phytophthora infestans primes defense reaction in potato cell suspensions.
Val F, Desender S, Bernard K, Potin P, Hamelin G, Andrivon D., Phytopathology 98(6), 2008
PMID: 18944288
Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance.
van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A., Mol Plant Microbe Interact 21(12), 2008
PMID: 18986257
Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides.
Newman MA, Dow JM, Molinaro A, Parrilli M., J Endotoxin Res 13(2), 2007
PMID: 17621548
Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi.
Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik VE, Expert D., Mol Plant Microbe Interact 20(7), 2007
PMID: 17601167
Pattern recognition receptors: from the cell surface to intracellular dynamics.
Altenbach D, Robatzek S., Mol Plant Microbe Interact 20(9), 2007
PMID: 17849705
Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions.
He YW, Xu M, Lin K, Ng YJ, Wen CM, Wang LH, Liu ZD, Zhang HB, Dong YH, Dow JM, Zhang LH., Mol Microbiol 59(2), 2006
PMID: 16390454
Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco.
Szatmari A, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozsó Z., Plant Cell Rep 25(7), 2006
PMID: 16456648
Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells.
Gerber IB, Laukens K, Witters E, Dubery IA., Plant Physiol Biochem 44(5-6), 2006
PMID: 16889970
Lipopolysaccharides of Pectobacterium atrosepticum and Pseudomonas corrugata induce different defence response patterns in tobacco, tomato, and potato.
Desender S, Klarzynski O, Potin P, Barzic MR, Andrivon D, Val F., Plant Biol (Stuttg) 8(5), 2006
PMID: 16755465
Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells.
Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N., Plant Cell Physiol 47(11), 2006
PMID: 17018557
Non-host resistance in plants: new insights into an old phenomenon.
Nurnberger T, Lipka V., Mol Plant Pathol 6(3), 2005
PMID: IND43715733
Elicitor signal transduction leading to production of plant secondary metabolites.
Zhao J, Davis LC, Verpoorte R., Biotechnol Adv 23(4), 2005
PMID: 15848039
Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence.
Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter FJ, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O., J Bacteriol 187(21), 2005
PMID: 16237009
Innate immunity in plants and animals: striking similarities and obvious differences.
Nürnberger T, Brunner F, Kemmerling B, Piater L., Immunol Rev 198(), 2004
PMID: 15199967
Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria.
Keshavarzi M, Soylu S, Brown I, Bonas U, Nicole M, Rossiter J, Mansfield J., Mol Plant Microbe Interact 17(7), 2004
PMID: 15242175
Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes.
Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J., Proc Natl Acad Sci U S A 101(44), 2004
PMID: 15498873
The role of lipopolysaccharides in induction of plant defence responses.
Erbs G, Newman MA., Mol Plant Pathol 4(5), 2003
PMID: IND43615001
Intracellular vs extracellular recognition of pathogens--common concepts in mammals and flies.
Girardin SE, Sansonetti PJ, Philpott DJ., Trends Microbiol 10(4), 2002
PMID: 11912027
ML -- a conserved domain involved in innate immunity and lipid metabolism.
Inohara N, Nuñez G., Trends Biochem Sci 27(5), 2002
PMID: 12076526

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11469586
PubMed | Europe PMC

Suchen in

Google Scholar