Strong converse for identification via quantum channels

Ahlswede R, Winter A (2002)
IEEE TRANSACTIONS ON INFORMATION THEORY 48(3): 569-579.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
In this paper, we present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede's recently discovered approach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking values in self-adjoint operators on a Hilbert space. This theory is presented separately in an appendix, and we illustrate it by showing its application to quantum generalizations of classical hypergraph covering problems.
Erscheinungsjahr
Zeitschriftentitel
IEEE TRANSACTIONS ON INFORMATION THEORY
Band
48
Zeitschriftennummer
3
Seite
569-579
ISSN
PUB-ID

Zitieren

Ahlswede R, Winter A. Strong converse for identification via quantum channels. IEEE TRANSACTIONS ON INFORMATION THEORY. 2002;48(3):569-579.
Ahlswede, R., & Winter, A. (2002). Strong converse for identification via quantum channels. IEEE TRANSACTIONS ON INFORMATION THEORY, 48(3), 569-579. doi:10.1109/18.985947
Ahlswede, R., and Winter, A. (2002). Strong converse for identification via quantum channels. IEEE TRANSACTIONS ON INFORMATION THEORY 48, 569-579.
Ahlswede, R., & Winter, A., 2002. Strong converse for identification via quantum channels. IEEE TRANSACTIONS ON INFORMATION THEORY, 48(3), p 569-579.
R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels”, IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 48, 2002, pp. 569-579.
Ahlswede, R., Winter, A.: Strong converse for identification via quantum channels. IEEE TRANSACTIONS ON INFORMATION THEORY. 48, 569-579 (2002).
Ahlswede, Rudolf, and Winter, A. “Strong converse for identification via quantum channels”. IEEE TRANSACTIONS ON INFORMATION THEORY 48.3 (2002): 569-579.