Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2

Rathke-Hartlieb S, Schlomann U, Heimann P, Meisler MH, Jockusch H, Bartsch JW (2002)
Experimental Neurology 175(1): 87-97.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
The mouse mutant "motoneuron disease 2" (MND2, mnd2 on Chr 6) was originally characterized as a spinal muscular atrophy (SMA) because degenerating motoneurons were observed in late stages of the disease. MND2 mutants exhibit a progressive phenotype with neurological symptoms that begin at postnatal day (dP) 20 and include involuntary movements, abnormal postures, akinesis, and death between dP 30 and 40. Unexpectedly, there was no induction of acetylcholine receptor alpha subunit mRNA in skeletal muscle of MND2 mice, an indicator of muscle denervation due to motoneuron loss. Rather, we found a massive loss of striatal neurons beginning at dP 25. Histochemical and ultrastructural analysis revealed nuclear pyknosis, chromatin condensation, and organelle disintegration, combined features of apoptosis and necrosis, characteristic for excitotoxic cell death. Striatal neurodegeneration was accompanied by a pronounced astrogliosis and activation of microglia with macrophage morphology. Motor abnormalities and neuronal loss in MND2 mice were not prevented by neuronal overexpression of a Bcl-2 transgene. Transcripts of several cytokines, including Interleukin-1beta and tumor necrosis factor alpha, were upregulated in the CNS, as well as in lung and spleen, indicating that the mnd2 mutation causes additional pathological effects outside the CNS. Since a 50% reduction in the number of striatal neurons is sufficient to account for the neurological phenotype of MND2 mice, MND2 may be classified as striatal atrophy rather than a primary motor neuron disease. Thus, MND2 mutant mice may provide useful insights into molecular events underlying striatal cell death. (C) 2002 Elsevier Science (USA).
Erscheinungsjahr
Zeitschriftentitel
Experimental Neurology
Band
175
Ausgabe
1
Seite(n)
87-97
ISSN
PUB-ID

Zitieren

Rathke-Hartlieb S, Schlomann U, Heimann P, Meisler MH, Jockusch H, Bartsch JW. Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Experimental Neurology. 2002;175(1):87-97.
Rathke-Hartlieb, S., Schlomann, U., Heimann, P., Meisler, M. H., Jockusch, H., & Bartsch, J. W. (2002). Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Experimental Neurology, 175(1), 87-97. doi:10.1006/exnr.2002.7868
Rathke-Hartlieb, S., Schlomann, U., Heimann, P., Meisler, M. H., Jockusch, H., and Bartsch, J. W. (2002). Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Experimental Neurology 175, 87-97.
Rathke-Hartlieb, S., et al., 2002. Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Experimental Neurology, 175(1), p 87-97.
S. Rathke-Hartlieb, et al., “Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2”, Experimental Neurology, vol. 175, 2002, pp. 87-97.
Rathke-Hartlieb, S., Schlomann, U., Heimann, P., Meisler, M.H., Jockusch, H., Bartsch, J.W.: Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Experimental Neurology. 175, 87-97 (2002).
Rathke-Hartlieb, S, Schlomann, U, Heimann, Peter, Meisler, MH, Jockusch, Harald, and Bartsch, JW. “Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2”. Experimental Neurology 175.1 (2002): 87-97.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The genetic architecture of mitochondrial dysfunction in Parkinson's disease.
Larsen SB, Hanss Z, Krüger R., Cell Tissue Res 373(1), 2018
PMID: 29372317
Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process.
Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR., Cell Mol Neurobiol 38(6), 2018
PMID: 29700661
Mitochondrial dysfunction in Parkinson's disease.
Hu Q, Wang G., Transl Neurodegener 5(), 2016
PMID: 27453777
PARL: The mitochondrial rhomboid protease.
Spinazzi M, De Strooper B., Semin Cell Dev Biol 60(), 2016
PMID: 27502471
HtrA2 suppresses autoimmune arthritis and regulates activation of STAT3.
Lee SH, Moon YM, Seo HB, Kim SY, Kim EK, Yi J, Nam MK, Min JK, Park SH, Rhim H, Cho ML., Sci Rep 6(), 2016
PMID: 28008946
The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway.
Xu R, Hu Q, Ma Q, Liu C, Wang G., Cell Death Dis 5(), 2014
PMID: 25118933
The protease Omi cleaves the mitogen-activated protein kinase kinase MEK1 to inhibit microglial activation.
Hu Q, Li B, Xu R, Chen D, Mu C, Fei E, Wang G., Sci Signal 5(238), 2012
PMID: 22912494
Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease.
Guo M., Cold Spring Harb Perspect Med 2(11), 2012
PMID: 23024178
Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1.
Kieper N, Holmström KM, Ciceri D, Fiesel FC, Wolburg H, Ziviani E, Whitworth AJ, Martins LM, Kahle PJ, Krüger R., Exp Cell Res 316(7), 2010
PMID: 20064504
Neurodegeneration in mnd2 mutant mice is not prevented by parkin transgene.
Yoshida T, Mizuta T, Shimizu S., Biochem Biophys Res Commun 402(4), 2010
PMID: 20971077
Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease.
Inagaki R, Tagawa K, Qi ML, Enokido Y, Ito H, Tamura T, Shimizu S, Oyanagi K, Arai N, Kanazawa I, Wanker EE, Okazawa H., Eur J Neurosci 28(1), 2008
PMID: 18662332
Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo.
Yun J, Cao JH, Dodson MW, Clark IE, Kapahi P, Chowdhury RB, Guo M., J Neurosci 28(53), 2008
PMID: 19118185
Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.
Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Müller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Krüger R., Hum Mol Genet 14(15), 2005
PMID: 15961413
Mitochondrial proteins in neuronal degeneration.
Lindholm D, Eriksson O, Korhonen L., Biochem Biophys Res Commun 321(4), 2004
PMID: 15358091
Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice.
Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J., Mol Cell Biol 24(22), 2004
PMID: 15509788
Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice.
Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnóczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES., Nature 425(6959), 2003
PMID: 14534547

33 References

Daten bereitgestellt von Europe PubMed Central.

The functional anatomy of basal ganglia disorders.
Albin RL, Young AB, Penney JB., Trends Neurosci. 12(10), 1989
PMID: 2479133
Bcl-xL protects adult septal cholinergic neurons from axotomized cell death.
Blomer U, Kafri T, Randolph-Moore L, Verma IM, Gage FH., Proc. Natl. Acad. Sci. U.S.A. 95(5), 1998
PMID: 9482933
Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity.
Eftimie R, Brenner HR, Buonanno A., Proc. Natl. Acad. Sci. U.S.A. 88(4), 1991
PMID: 1705035
A susceptibility locus for Parkinson's disease maps to chromosome 2p13.
Gasser T, Muller-Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, Bereznai B, Fabrizio E, Vieregge P, Horstmann RD., Nat. Genet. 18(3), 1998
PMID: 9500549
Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.
Gavrieli Y, Sherman Y, Ben-Sasson SA., J. Cell Biol. 119(3), 1992
PMID: 1400587
Inflammation in traumatic brain injury: role of cytokines and chemokines.
Ghirnikar RS, Lee YL, Eng LF., Neurochem. Res. 23(3), 1998
PMID: 9482245

Grofova, 1979
Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain.
Ishimaru MJ, Ikonomidou C, Tenkova TI, Der TC, Dikranian K, Sesma MA, Olney JW., J. Comp. Neurol. 408(4), 1999
PMID: 10340498
Microglia-specific localisation of a novel calcium binding protein, Iba1.
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S., Brain Res. Mol. Brain Res. 57(1), 1998
PMID: 9630473
Comparative sequence of human and mouse BAC clones from the mnd2 region of chromosome 2p13.
Jang W, Hua A, Spilson SV, Miller W, Roe BA, Meisler MH., Genome Res. 9(1), 1999
PMID: 9927484
mnd2: a new mouse model of inherited motor neuron disease.
Jones JM, Albin RL, Feldman EL, Simin K, Schuster TG, Dunnick WA, Collins JT, Chrisp CE, Taylor BA, Meisler MH., Genomics 16(3), 1993
PMID: 8325640
Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.
Kerr JF, Wyllie AH, Currie AR., Br. J. Cancer 26(4), 1972
PMID: 4561027
TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement.
Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Brambilla E, Negoescu A., J. Histochem. Cytochem. 46(3), 1998
PMID: 9487114
The dystonias.
Marsden CD, Quinn NP., BMJ 300(6718), 1990
PMID: 2105790
Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis.
Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C., Brain Res. Bull. 46(4), 1998
PMID: 9671259
Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.
Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C., Neuron 13(4), 1994
PMID: 7946326
Cytokines in inflammatory brain lesions: helpful and harmful.
Merrill JE, Benveniste EN., Trends Neurosci. 19(8), 1996
PMID: 8843602
The selective vulnerability of striatopallidal neurons.
Mitchell IJ, Cooper AJ, Griffiths MR., Prog. Neurobiol. 59(6), 1999
PMID: 10845758
Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse.
Rathke-Hartlieb S, Schmidt VC, Jockusch H, Schmitt-John T, Bartsch JW., Neuroreport 10(16), 1999
PMID: 10599854
Pathology of idiopathic dystonia: findings from genetic animal models.
Richter A, Loscher W., Prog. Neurobiol. 54(6), 1998
PMID: 9560845
Wilson's disease.
Robertson WM., Arch. Neurol. 57(2), 2000
PMID: 10681092
Mouse vaginal opening is an apoptosis-dependent process which can be prevented by the overexpression of Bcl2.
Rodriguez I, Araki K, Khatib K, Martinou JC, Vassalli P., Dev. Biol. 184(1), 1997
PMID: 9142988
Dystonia associated with mutation of the neuronal sodium channel Scn8a and identification of the modifier locus Scnm1 on mouse chromosome 3.
Sprunger LK, Escayg A, Tallaksen-Greene S, Albin RL, Meisler MH., Hum. Mol. Genet. 8(3), 1999
PMID: 9949206
Differential effects of Bcl-2 overexpression on hippocampal CA1 neurons and dentate granule cells following hypoxic ischemia in adult mice.
Wang HD, Fukuda T, Suzuki T, Hashimoto K, Liou SY, Momoi T, Kosaka T, Yamamoto K, Nakanishi H., J. Neurosci. Res. 57(1), 1999
PMID: 10397630
High-resolution genetic, physical, and transcript map of the mnd2 region of mouse chromosome 6.
Weber JS, Jang W, Simin K, Lu W, Yu J, Meisler MH., Genomics 54(1), 1998
PMID: 9806835

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12009762
PubMed | Europe PMC

Suchen in

Google Scholar