Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta

Engelke M, Friedrich O, Budde P, Schafer C, Niemann U, Zitt C, Jungling E, Rocks O, Luckhoff A, Frey J (2002)
FEBS LETTERS 523(1-3): 193-199.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca2+ influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca2+ influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Engelke M, Friedrich O, Budde P, et al. Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta. FEBS LETTERS. 2002;523(1-3):193-199.
Engelke, M., Friedrich, O., Budde, P., Schafer, C., Niemann, U., Zitt, C., Jungling, E., et al. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta. FEBS LETTERS, 523(1-3), 193-199.
Engelke, M., Friedrich, O., Budde, P., Schafer, C., Niemann, U., Zitt, C., Jungling, E., Rocks, O., Luckhoff, A., and Frey, J. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta. FEBS LETTERS 523, 193-199.
Engelke, M., et al., 2002. Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta. FEBS LETTERS, 523(1-3), p 193-199.
M. Engelke, et al., “Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta”, FEBS LETTERS, vol. 523, 2002, pp. 193-199.
Engelke, M., Friedrich, O., Budde, P., Schafer, C., Niemann, U., Zitt, C., Jungling, E., Rocks, O., Luckhoff, A., Frey, J.: Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta. FEBS LETTERS. 523, 193-199 (2002).
Engelke, M, Friedrich, O, Budde, P, Schafer, C, Niemann, U, Zitt, C, Jungling, E, Rocks, O, Luckhoff, A, and Frey, Jürgen. “Structural domains required for channel function of the mouse transient receptor potential protein homologue TR1 beta”. FEBS LETTERS 523.1-3 (2002): 193-199.
This data publication is cited in the following publications:
This publication cites the following data publications:

18 Citations in Europe PMC

Data provided by Europe PubMed Central.

Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels.
Kim J, Kwak M, Jeon JP, Myeong J, Wie J, Hong C, Kim SY, Jeon JH, Kim HJ, So I., Pflugers Arch. 466(3), 2014
PMID: 23948741
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.
Katz B, Oberacker T, Richter D, Tzadok H, Peters M, Minke B, Huber A., J. Cell. Sci. 126(Pt 14), 2013
PMID: 23687378
Role of the transient receptor potential vanilloid 5 (TRPV5) protein N terminus in channel activity, tetramerization, and trafficking.
de Groot T, van der Hagen EA, Verkaart S, te Boekhorst VA, Bindels RJ, Hoenderop JG., J. Biol. Chem. 286(37), 2011
PMID: 21795703
Heteromerization of TRP channel subunits: extending functional diversity.
Cheng W, Sun C, Zheng J., Protein Cell 1(9), 2010
PMID: 21203922
Selective interference with TRPC3/6 channels disrupts OX1 receptor signalling via NCX and reveals a distinct calcium influx pathway.
Louhivuori LM, Jansson L, Nordstrom T, Bart G, Nasman J, Akerman KE., Cell Calcium 48(2-3), 2010
PMID: 20728215
Regulation of TRPC1 and TRPC4 cation channels requires an alpha1-syntrophin-dependent complex in skeletal mouse myotubes.
Sabourin J, Lamiche C, Vandebrouck A, Magaud C, Rivet J, Cognard C, Bourmeyster N, Constantin B., J. Biol. Chem. 284(52), 2009
PMID: 19812031
Organization and function of TRPC channelosomes.
Ambudkar IS, Ong HL., Pflugers Arch. 455(2), 2007
PMID: 17486362
TRPC1: the link between functionally distinct store-operated calcium channels.
Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Bandyopadhyay B, Cheng KT., Cell Calcium 42(2), 2007
PMID: 17350680
Mechanism and functional significance of TRPC channel multimerization.
Villereal ML., Semin. Cell Dev. Biol. 17(6), 2006
PMID: 17158075
Functional organization of TRPC-Ca2+ channels and regulation of calcium microdomains.
Ambudkar IS, Bandyopadhyay BC, Liu X, Lockwich TP, Paria B, Ong HL., Cell Calcium 40(5-6), 2006
PMID: 17030060
Coiled coils direct assembly of a cold-activated TRP channel.
Tsuruda PR, Julius D, Minor DL Jr., Neuron 51(2), 2006
PMID: 16846855
TRPC1: store-operated channel and more.
Beech DJ., Pflugers Arch. 451(1), 2005
PMID: 15965706
Structure-function analysis of TRPV channels.
Niemeyer BA., Naunyn Schmiedebergs Arch. Pharmacol. 371(4), 2005
PMID: 15889240
The mammalian TRPC cation channels.
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr., Biochim. Biophys. Acta 1742(1-3), 2004
PMID: 15590053
TRPC1 store-operated cationic channel subunit.
Beech DJ, Xu SZ, McHugh D, Flemming R., Cell Calcium 33(5-6), 2003
PMID: 12765688

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12123831
PubMed | Europe PMC

Search this title in

Google Scholar