Mutation-selection balance: Ancestry, load, and maximum principle

Hermisson J, Redner O, Wagner H, Baake E (2002)
THEORETICAL POPULATION BIOLOGY 62(1): 9-46.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
We analyze the equilibrium behavior of deterministic haploid mutation-selection models. To this end, both the forward and the time-reversed evolution processes are considered. The stationary state of the latter is called the ancestral distribution, which turns out as a key for the study of mutation-selection balance. We find that the ancestral genotype frequencies determine the sensitivity of the equilibrium mean fitness to changes in the corresponding fitness values and discuss implications for the evolution of mutational robustness. We further show that the difference between the ancestral and the population mean fitness, termed mutational loss,provides a measure for the sensitivity of the equilibrium mean fitness to changes in the mutation rate. The interrelation of the loss and the mutation load is discussed. For a class Of models in which the number of mutations in an individual is taken as the trait value, and fitness is a function of the trait, we use the ancestor formulation to derive a simple maximum principle, from which the mean and variance of fitness and the trait may be derived; the results are exact for a number of limiting cases, and otherwise yield approximations which are accurate for a wide range of parameters. These results are applied to threshold phenomena caused by the interplay of selection and mutation (known as error thresholds). They lead to a clarification of concepts, as well as criteria for the existence of error thresholds. (C) 2002 Elsevier Science (USA).
Erscheinungsjahr
Zeitschriftentitel
THEORETICAL POPULATION BIOLOGY
Band
62
Zeitschriftennummer
1
Seite
9-46
ISSN
PUB-ID

Zitieren

Hermisson J, Redner O, Wagner H, Baake E. Mutation-selection balance: Ancestry, load, and maximum principle. THEORETICAL POPULATION BIOLOGY. 2002;62(1):9-46.
Hermisson, J., Redner, O., Wagner, H., & Baake, E. (2002). Mutation-selection balance: Ancestry, load, and maximum principle. THEORETICAL POPULATION BIOLOGY, 62(1), 9-46. doi:10.1006/tpbi.2002.1582
Hermisson, J., Redner, O., Wagner, H., and Baake, E. (2002). Mutation-selection balance: Ancestry, load, and maximum principle. THEORETICAL POPULATION BIOLOGY 62, 9-46.
Hermisson, J., et al., 2002. Mutation-selection balance: Ancestry, load, and maximum principle. THEORETICAL POPULATION BIOLOGY, 62(1), p 9-46.
J. Hermisson, et al., “Mutation-selection balance: Ancestry, load, and maximum principle”, THEORETICAL POPULATION BIOLOGY, vol. 62, 2002, pp. 9-46.
Hermisson, J., Redner, O., Wagner, H., Baake, E.: Mutation-selection balance: Ancestry, load, and maximum principle. THEORETICAL POPULATION BIOLOGY. 62, 9-46 (2002).
Hermisson, Joachim, Redner, Oliver, Wagner, Holger, and Baake, Ellen. “Mutation-selection balance: Ancestry, load, and maximum principle”. THEORETICAL POPULATION BIOLOGY 62.1 (2002): 9-46.

39 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Modeling clonal expansion from M-FISH experiments.
Stolte T, Hösel V, Müller J, Speicher M., J Comput Biol 15(2), 2008
PMID: 18312152
Diploid biological evolution models with general smooth fitness landscapes and recombination.
Saakian DB, Kirakosyan Z, Hu CK., Phys Rev E Stat Nonlin Soft Matter Phys 77(6 pt 1), 2008
PMID: 18643300
Highly fit ancestors of a partly sexual haploid population.
Rouzine IM, Coffin JM., Theor Popul Biol 71(2), 2007
PMID: 17097121
Thermodynamics of neutral protein evolution.
Bloom JD, Raval A, Wilke CO., Genetics 175(1), 2007
PMID: 17110496
Error-threshold exists in fitness landscapes with lethal mutants.
Takeuchi N, Hogeweg P., BMC Evol Biol 7(), 2007
PMID: 17286853
Mutation model for nucleotide sequences based on crystal basis.
Minichini C, Sciarrino A., Biosystems 84(3), 2006
PMID: 16387418
Recombination and the evolution of mutational robustness.
Gardner A, Kalinka AT., J Theor Biol 241(4), 2006
PMID: 16487979
Polymer-population mapping and localization in the space of phenotypes.
Kussell E, Leibler S, Grosberg A., Phys Rev Lett 97(6), 2006
PMID: 17026205
The opportunity for canalization and the evolution of genetic networks.
Proulx SR, Phillips PC., Am Nat 165(2), 2005
PMID: 15729647
Solvable biological evolution models with general fitness functions and multiple mutations in parallel mutation-selection scheme.
Saakian DB, Hu CK, Khachatryan H., Phys Rev E Stat Nonlin Soft Matter Phys 70(4 pt 1), 2004
PMID: 15600436
Perspective: Evolution and detection of genetic robustness.
de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC., Evolution 57(9), 2003
PMID: 14575319

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12056863
PubMed | Europe PMC

Suchen in

Google Scholar