Human vs. machine: evaluation of fluorescence micrographs

Nattkemper TW, Twellmann T, Ritter H, Schubert W (2003)
Computers in Biology and Medicine 33(1): 31-43.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
To enable high-throughput screening of molecular phenotypes, multi-parameter fluorescence microscopy is applied. Object of our study is lymphocytes which invade human tissue. One important basis for our collaborative project is the development of methods for automatic and accurate evaluation of fluorescence micrographs. As a part of this, we focus on the question of how to measure the accuracy of microscope image interpretation, by human experts or a computer system. Following standard practice we use methods motivated by receiver operator characteristics to discuss the accuracies of human experts and of neural network-based algorithms. For images of good quality the algorithms achieve the accuracy of the medium-skilled experts. In images with increased noise, the classifiers are outperformed by some of the experts. Furthermore, the neural network-based cell detection is much faster than the human experts.
Publishing Year
ISSN
PUB-ID

Cite this

Nattkemper TW, Twellmann T, Ritter H, Schubert W. Human vs. machine: evaluation of fluorescence micrographs. Computers in Biology and Medicine. 2003;33(1):31-43.
Nattkemper, T. W., Twellmann, T., Ritter, H., & Schubert, W. (2003). Human vs. machine: evaluation of fluorescence micrographs. Computers in Biology and Medicine, 33(1), 31-43.
Nattkemper, T. W., Twellmann, T., Ritter, H., and Schubert, W. (2003). Human vs. machine: evaluation of fluorescence micrographs. Computers in Biology and Medicine 33, 31-43.
Nattkemper, T.W., et al., 2003. Human vs. machine: evaluation of fluorescence micrographs. Computers in Biology and Medicine, 33(1), p 31-43.
T.W. Nattkemper, et al., “Human vs. machine: evaluation of fluorescence micrographs”, Computers in Biology and Medicine, vol. 33, 2003, pp. 31-43.
Nattkemper, T.W., Twellmann, T., Ritter, H., Schubert, W.: Human vs. machine: evaluation of fluorescence micrographs. Computers in Biology and Medicine. 33, 31-43 (2003).
Nattkemper, Tim Wilhelm, Twellmann, Thorsten, Ritter, Helge, and Schubert, Walter. “Human vs. machine: evaluation of fluorescence micrographs”. Computers in Biology and Medicine 33.1 (2003): 31-43.
This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
Lojk J, Cibej U, Karlas D, Sajn L, Pavlin M., J Microsc 260(1), 2015
PMID: 26098834
Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images.
Coelho LP, Pato C, Friaes A, Neumann A, von Kockritz-Blickwede M, Ramirez M, Carrico JA., Bioinformatics 31(14), 2015
PMID: 25792554
A new era in bioimage informatics.
Murphy RF., Bioinformatics 30(10), 2014
PMID: 24753489
Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems.
Bizzaro N, Antico A, Platzgummer S, Tonutti E, Bassetti D, Pesente F, Tozzoli R, Tampoia M, Villalta D; Study Group on Autoimmune Diseases of the Italian Society of Laboratory Medicine, Italy., Autoimmun Rev 13(3), 2014
PMID: 24220268
Determining the subcellular location of new proteins from microscope images using local features.
Coelho LP, Kangas JD, Naik AW, Osuna-Highley E, Glory-Afshar E, Fuhrman M, Simha R, Berget PB, Jarvik JW, Murphy RF., Bioinformatics 29(18), 2013
PMID: 23836142
Biological imaging software tools.
Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Stuurmann N, Swedlow JR, Tomancak P, Carpenter AE., Nat. Methods 9(7), 2012
PMID: 22743775
Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS.
Schubert W, Gieseler A, Krusche A, Serocka P, Hillert R., N Biotechnol 29(5), 2012
PMID: 22209707
Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
Held C, Palmisano R, Haberle L, Hensel M, Wittenberg T., Cytometry A 79(11), 2011
PMID: 22002887
A biosegmentation benchmark for evaluation of bioimage analysis methods.
Drelie Gelasca E, Obara B, Fedorov D, Kvilekval K, Manjunath B., BMC Bioinformatics 10(), 2009
PMID: 19878606
Spermatogonium image recognition using Zernike moments.
Liyun W, Hefei L, Fuhao Z, Zhengding L, Zhendi W., Comput Methods Programs Biomed 95(1), 2009
PMID: 19268385
Functional architecture of the cell nucleus: towards comprehensive toponome reference maps of apoptosis.
Schubert W, Friedenberger M, Bode M, Krusche A, Hillert R., Biochim. Biophys. Acta 1783(11), 2008
PMID: 18718492
Toponomics and neurotoponomics: a new way to medical systems biology.
Schubert W, Bode M, Hillert R, Krusche A, Friedenberger M., Expert Rev Proteomics 5(2), 2008
PMID: 18466063
Automatic segmentation of age-related macular degeneration in retinal fundus images.
Kose C, Sevik U, Gencalioglu O., Comput. Biol. Med. 38(5), 2008
PMID: 18402931
In situ dark field microscopy for on-line monitoring of yeast cultures.
Wei N, You J, Friehs K, Flaschel E, Nattkemper TW., Biotechnol. Lett. 29(3), 2007
PMID: 17186133
Automated detection of tunneling nanotubes in 3D images.
Hodneland E, Lundervold A, Gurke S, Tai XC, Rustom A, Gerdes HH., Cytometry A 69(9), 2006
PMID: 16969816
Quantification of vesicles in differentiating human SH-SY5Y neuroblastoma cells by automated image analysis.
Selinummi J, Sarkanen JR, Niemisto A, Linne ML, Ylikomi T, Yli-Harja O, Jalonen TO., Neurosci. Lett. 396(2), 2006
PMID: 16356645
A new preprocessing approach for cell recognition.
Long X, Cleveland WL, Yao YL., IEEE Trans Inf Technol Biomed 9(3), 2005
PMID: 16167695

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12485628
PubMed | Europe PMC

Search this title in

Google Scholar