Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula

Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F (2003)
Mol Plant Microbe Interact 16(4): 306-314.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
Significant changes in root morphology and physiology during arbuscular mycorrhiza (AM) development are likely to be controlled by specific gene expression pattern in the host plant. Until now, little was known about transcriptional changes which occur AM-exclusively; that is, they do not occur during other root-microbe associations, nor are they induced by improved phosphate nutrition. In order to identify such AM-exclusive gene inductions of Medicago truncatula, we used a pool of different RNA samples as subtractor population in a suppressive subtractive hybridization (SSH) experiment. This approach resulted in the identification of a number of new AM-regulated genes. None of these genes were expressed in nonmycorrhiza roots or leaves. Electronic data obtained by comparison of the cDNA sequences to expressed sequence tag (EST) sequences from a wide range of cDNA libraries in the M. truncatula EST database (Gene Index, MtGI) support the mycorrhiza specificity of the corresponding genes, because sequences in the MtGI that were found to match the identified SSH-cDNA sequences originated exclusively from AM cDNA libraries. The promoter of one of those genes, MtGst1, showing similarities to plant glutathione-S-transferase (GST) encoding genes, was cloned and used in reporter gene studies. In contrast to studies with the potato GST gene PRP, MtGst 1 promoter activity was detected in all zones of the root cortex colonized by Glomus intraradices, but nowhere else.
Publishing Year
ISSN
PUB-ID

Cite this

Wulf A, Manthey K, Doll J, et al. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact. 2003;16(4):306-314.
Wulf, A., Manthey, K., Doll, J., Perlick, A. M., Linke, B., Bekel, T., Meyer, F., et al. (2003). Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact, 16(4), 306-314.
Wulf, A., Manthey, K., Doll, J., Perlick, A. M., Linke, B., Bekel, T., Meyer, F., Franken, P., Küster, H., and Krajinski, F. (2003). Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16, 306-314.
Wulf, A., et al., 2003. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact, 16(4), p 306-314.
A. Wulf, et al., “Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula”, Mol Plant Microbe Interact, vol. 16, 2003, pp. 306-314.
Wulf, A., Manthey, K., Doll, J., Perlick, A.M., Linke, B., Bekel, T., Meyer, F., Franken, P., Küster, H., Krajinski, F.: Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact. 16, 306-314 (2003).
Wulf, A., Manthey, Katja, Doll, J., Perlick, A.M., Linke, Burkhard, Bekel, Thomas, Meyer, F., Franken, P., Küster, Helge, and Krajinski, F. “Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula”. Mol Plant Microbe Interact 16.4 (2003): 306-314.
This data publication is cited in the following publications:
This publication cites the following data publications:

62 Citations in Europe PMC

Data provided by Europe PubMed Central.

Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates.
Giovannetti M, Mari A, Novero M, Bonfante P., Front Plant Sci 6(), 2015
PMID: 26175746
Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrere S, Herve C, Debelle F, Gamas P, Bensmihen S, Gough C., New Phytol. 208(1), 2015
PMID: 25919491
Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis.
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L., Front Plant Sci 5(), 2014
PMID: 25520732
ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.
Albornos L, Martin I, Iglesias R, Jimenez T, Labrador E, Dopico B., BMC Plant Biol. 12(), 2012
PMID: 23134664
Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species.
Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E., Mycorrhiza 21(6), 2011
PMID: 21210159
Fast track in vitro mycorrhization of potato plantlets allow studies on gene expression dynamics.
Gallou A, De Jaeger N, Cranenbrouck S, Declerck S., Mycorrhiza 20(3), 2010
PMID: 19727848
Susceptibility of Phelipanche and Orobanche species to AAL-toxin.
de Zelicourt A, Montiel G, Pouvreau JB, Thoiron S, Delgrange S, Simier P, Delavault P., Planta 230(5), 2009
PMID: 19705146
Pre-Penetration Apparatus Formation During AM Infection is Associated With a Specific Transcriptome Response in Epidermal Cells.
Siciliano V, Genre A, Balestrini R, Dewit PJ, Bonfante P., Plant Signal Behav 2(6), 2007
PMID: 19704551

38 References

Data provided by Europe PubMed Central.

Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules.
Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A., Proc. Natl. Acad. Sci. U.S.A. 98(26), 2001
PMID: 11752473
An optimized protocol for analysis of EST sequences.
Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J., Nucleic Acids Res. 28(18), 2000
PMID: 10982889
The Medicago Genome Initiative: a model legume database.
Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD., Nucleic Acids Res. 29(1), 2001
PMID: 11125064
A plant receptor-like kinase required for both bacterial and fungal symbiosis.
Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M., Nature 417(6892), 2002
PMID: 12087405
A receptor kinase gene regulating symbiotic nodule development.
Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB., Nature 417(6892), 2002
PMID: 12087406
New plant promoter and enhancer testing vectors.
Szabados L, Charrier B, Kondorosi A, Bruijn FJde, Ratet P., Mol. Breed. 1(4), 1995
PMID: IND21967687
Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N
JOHANSEN, New Phytologist 122(2), 1992
Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).
Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M., Nucleic Acids Res. 21(18), 1993
PMID: 8414982
Water and nutrient translocation by hyphae of Glomus mosseae
George, Botany 70(11), 1992

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12744459
PubMed | Europe PMC

Search this title in

Google Scholar