Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants

Campbell GRO, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC (2003)
Journal of Bacteriology 185(13): 3853-3862.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Although the role that lipopolysaccharide (LPS) plays in the symbiosis between Sinorhizobium meliloti and alfalfa has been studied for over a decade, its function in this process remains controversial and poorly understood. This is largely due to a lack of mutants affected by its synthesis. In one of the definitive studies concerning this issue, Clover et al. (R. H. Clover, J. Kieber, and E. R. Signer, J. Bacteriol. 171:3961-3967, 1989) identified a series of mutants with putative LPS defects, judged them to be symbiotically proficient on Medicago sativa, and concluded that LPS might not have a symbiotic function in S. meliloti. The mutations in these strains were never characterized at the molecular level nor was the LPS from most of them analyzed. We have transduced these mutations from the Rm2011 background from which they were originally isolated into the sequenced strain Rm1021 and have characterized the resulting strains in greater detail. We found the LPS from these mutants to display a striking complexity of phenotypes on polyacrylamide electrophoresis gels, including additional rough LPS bands and alterations in the molecular weight distribution of the smooth LPS. We found that some of the mutants contain insertions in genes that are predicted to be involved in the synthesis of carbohydrate components of LPS, including ddhB, IpsB, lpsC, and lpsE. The majority, however, code for proteins predicted to be involved in a wide variety of functions not previously recognized to play a role in LPS synthesis, including a possible transcription elongation factor (GreA), a possible queuine synthesis protein, and a possible chemotaxis protein. Furthermore, using more extensive assays, we have found that most of these strains have symbiotic deficiencies. These results support more recent findings that alterations in LPS structure can affect the ability of S. meliloti to form an effective symbiosis.
Erscheinungsjahr
Zeitschriftentitel
Journal of Bacteriology
Band
185
Zeitschriftennummer
13
Seite
3853-3862
PUB-ID

Zitieren

Campbell GRO, Sharypova LA, Scheidle H, et al. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology. 2003;185(13):3853-3862.
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, K., Becker, A., & Walker, G. C. (2003). Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology, 185(13), 3853-3862. doi:10.1128/JB.185.13.3853.2003
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, K., Becker, A., and Walker, G. C. (2003). Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology 185, 3853-3862.
Campbell, G.R.O., et al., 2003. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology, 185(13), p 3853-3862.
G.R.O. Campbell, et al., “Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants”, Journal of Bacteriology, vol. 185, 2003, pp. 3853-3862.
Campbell, G.R.O., Sharypova, L.A., Scheidle, H., Jones, K.M., Niehaus, K., Becker, A., Walker, G.C.: Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology. 185, 3853-3862 (2003).
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, Karsten, Becker, A., and Walker, G. C. “Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants”. Journal of Bacteriology 185.13 (2003): 3853-3862.

48 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W., Mol Plant Microbe Interact 31(10), 2018
PMID: 30136892
Functional analysis of the two cyclophilin isoforms of Sinorhizobium meliloti.
Thomloudi EE, Skagia A, Venieraki A, Katinakis P, Dimou M., World J Microbiol Biotechnol 33(2), 2017
PMID: 28058638
The naringenin-induced exoproteome of Rhizobium etli CE3.
Meneses N, Taboada H, Dunn MF, Vargas MDC, Buchs N, Heller M, Encarnación S., Arch Microbiol 199(5), 2017
PMID: 28255691
Gre factors-mediated control of hilD transcription is essential for the invasion of epithelial cells by Salmonella enterica serovar Typhimurium.
Gaviria-Cantin T, El Mouali Y, Le Guyon S, Römling U, Balsalobre C., PLoS Pathog 13(4), 2017
PMID: 28426789
Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides.
Arnold MFF, Shabab M, Penterman J, Boehme KL, Griffitts JS, Walker GC., MBio 8(4), 2017
PMID: 28765224
Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome.
Johnson MC, Sena-Velez M, Washburn BK, Platt GN, Lu S, Brewer TE, Lynn JS, Stroupe ME, Jones KM., J Struct Biol 200(3), 2017
PMID: 28842338
Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM., Int J Mol Sci 17(5), 2016
PMID: 27213334
The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules.
Santos MR, Marques AT, Becker JD, Moreira LM., Mol Plant Microbe Interact 27(4), 2014
PMID: 24593245
Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.
Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, Masson-Boivin C., PLoS One 8(2), 2013
PMID: 23409119
Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
Haag AF, Arnold MF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP., FEMS Microbiol Rev 37(3), 2013
PMID: 22998605
The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.
Crook MB, Draper AL, Guillory RJ, Griffitts JS., J Bacteriol 195(16), 2013
PMID: 23749981
The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti.
Pini F, Frage B, Ferri L, De Nisco NJ, Mohapatra SS, Taddei L, Fioravanti A, Dewitte F, Galardini M, Brilli M, Villeret V, Bazzicalupo M, Mengoni A, Walker GC, Becker A, Biondi EG., Mol Microbiol 90(1), 2013
PMID: 23909720
The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS One 8(10), 2013
PMID: 24098345
Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions.
Abarca-Grau AM, Burbank LP, de Paz HD, Crespo-Rivas JC, Marco-Noales E, López MM, Vinardell JM, von Bodman SB, Penyalver R., Appl Environ Microbiol 78(6), 2012
PMID: 22210213
The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti.
Fields AT, Navarrete CS, Zare AZ, Huang Z, Mostafavi M, Lewis JC, Rezaeihaghighi Y, Brezler BJ, Ray S, Rizzacasa AL, Barnett MJ, Long SR, Chen EJ, Chen JC., Mol Microbiol 84(5), 2012
PMID: 22553970
A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules.
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM., BMC Microbiol 12(), 2012
PMID: 22587634
Tolerance of Mesorhizobium type strains to different environmental stresses.
Laranjo M, Oliveira S., Antonie Van Leeuwenhoek 99(3), 2011
PMID: 21152981
Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234.
Ardissone S, Kobayashi H, Kambara K, Rummel C, Noel KD, Walker GC, Broughton WJ, Deakin WJ., J Bacteriol 193(9), 2011
PMID: 21357487
Symbiotic use of pathogenic strategies: rhizobial protein secretion systems.
Deakin WJ, Broughton WJ., Nat Rev Microbiol 7(4), 2009
PMID: 19270720
Importance of proteins controlling initiation of DNA replication in the growth of the high-pressure-loving bacterium Photobacterium profundum SS9.
El-Hajj ZW, Tryfona T, Allcock DJ, Hasan F, Lauro FM, Sawyer L, Bartlett DH, Ferguson GP., J Bacteriol 191(20), 2009
PMID: 19700526
Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti.
Chen EJ, Fisher RF, Perovich VM, Sabio EA, Long SR., J Bacteriol 191(22), 2009
PMID: 19749054
Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants.
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A., Mol Plant Microbe Interact 21(2), 2008
PMID: 18184066
Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899.
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E., Environ Microbiol 10(5), 2008
PMID: 18312393
Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature.
Vriezen JA, de Bruijn FJ, Nüsslein K., Appl Environ Microbiol 73(11), 2007
PMID: 17400779
LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range.
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J., EMBO J 26(17), 2007
PMID: 17690687
Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro.
Stepanova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S., J Bacteriol 189(24), 2007
PMID: 17766423
Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12.
Campbell GR, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, Walker GC., Proc Natl Acad Sci U S A 103(12), 2006
PMID: 16537439
CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti.
Gibson KE, Campbell GR, Lloret J, Walker GC., J Bacteriol 188(12), 2006
PMID: 16740957
Epitope tagging of legume root nodule extensin modifies protein structure and crosslinking in cell walls of transformed tobacco leaves.
Gucciardo S, Rathbun EA, Shanks M, Jenkyns S, Mak L, Durrant MC, Brewin NJ., Mol Plant Microbe Interact 18(1), 2005
PMID: 15672815
Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis.
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC., Mol Plant Microbe Interact 18(5), 2005
PMID: 15915643
Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants.
Wielbo J, Mazur A, Król J, Marczak M, Kutkowska J, Skorupska A., Arch Microbiol 182(4), 2004
PMID: 15349716

55 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1994
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
GreA protein: a transcription elongation factor from Escherichia coli.
Borukhov S, Polyakov A, Nikiforov V, Goldfarb A., Proc. Natl. Acad. Sci. U.S.A. 89(19), 1992
PMID: 1384037
Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core.
Campbell GR, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904442
Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen.
Campbell GR, Reuhs BL, Walker GC., J. Bacteriol. 180(20), 1998
PMID: 9765576
A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities.
Campbell JA, Davies GJ, Bulone V, Henrissat B., Biochem. J. 326 ( Pt 3)(), 1997
PMID: 9334165
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Purification and antigenic analysis of the major 25-kilodalton outer membrane protein of Brucella abortus.
Cloeckaert A, Zygmunt MS, Bezard G, Dubray G., Res. Microbiol. 147(4), 1996
PMID: 8763610
Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis.
Clover RH, Kieber J, Signer ER., J. Bacteriol. 171(7), 1989
PMID: 2738026
Genetic manipulations in Rhizobium meliloti utilizing two new transposon Tn5 derivatives.
De Vos GF, Walker GC, Signer ER., Mol. Gen. Genet. 204(3), 1986
PMID: 3020382
Diversity of antimicrobial peptides and their mechanisms of action.
Epand RM, Vogel HJ., Biochim. Biophys. Acta 1462(1-2), 1999
PMID: 10590300
Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription.
Erie DA, Hajiseyedjavadi O, Young MC, von Hippel PH., Science 262(5135), 1993
PMID: 8235608
Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity.
Ernst RK, Guina T, Miller SI., Microbes Infect. 3(14-15), 2001
PMID: 11755422
General transduction in Rhizobium meliloti.
Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER., J. Bacteriol. 159(1), 1984
PMID: 6330024
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance.
Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI., Mol. Microbiol. 27(6), 1998
PMID: 9570402
Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores.
Hanke W, Methfessel C, Wilmsen HU, Katz E, Jung G, Boheim G., Biochim. Biophys. Acta 727(1), 1983
PMID: 6824646

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 1978
A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa.
Lagares A, Caetano-Anolles G, Niehaus K, Lorenzen J, Ljunggren HD, Puhler A, Favelukes G., J. Bacteriol. 174(18), 1992
PMID: 1325969
Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis.
Lagares A, Hozbor DF, Niehaus K, Otero AJ, Lorenzen J, Arnold W, Puhler A., J. Bacteriol. 183(4), 2001
PMID: 11157937
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides.
Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I., Infect. Immun. 63(8), 1995
PMID: 7622230
The role of microbial surface polysaccharides in the Rhizobium-legume interaction.
Niehaus K, Becker A., Subcell. Biochem. 29(), 1998
PMID: 9594645

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 2000
Effects of organic acids and low pH on Rhizobium meliloti 104A14.
Perez-Galdona R, Kahn ML., Microbiology (Reading, Engl.) 140 ( Pt 5)(), 1994
PMID: 8025689
[IRepeat sequences of genomes of Rhizobium and Sinorhizobium meliloti: a comparative analysis.]
Perret X, Parsons J, Viprey V, Reichwald K, Broughton WJ., Can. J. Microbiol. 47(6), 2001
PMID: 11469253

AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1976

AUTHOR UNKNOWN, 2002
Bacterial polysaccharide synthesis and gene nomenclature.
Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, Rick PD., Trends Microbiol. 4(12), 1996
PMID: 9004408
Isolation of ropB, a gene encoding a 22-kDa Rhizobium leguminosarum outer membrane protein.
Roest HP, Mulders IH, Wijffelman CA, Lugtenberg BJ., Mol. Plant Microbe Interact. 8(4), 1995
PMID: 8589412

AUTHOR UNKNOWN, 1996
The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding.
Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson WF, Egli M., Protein Sci. 9(12), 2000
PMID: 11206077
Agents that increase the permeability of the outer membrane.
Vaara M., Microbiol. Rev. 56(3), 1992
PMID: 1406489
Structure, assembly and regulation of expression of capsules in Escherichia coli.
Whitfield C, Roberts IS., Mol. Microbiol. 31(5), 1999
PMID: 10200953
Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo.
Yethon JA, Gunn JS, Ernst RK, Miller SI, Laroche L, Malo D, Whitfield C., Infect. Immun. 68(8), 2000
PMID: 10899846

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12813079
PubMed | Europe PMC

Suchen in

Google Scholar