Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants

Campbell GRO, Sharypova LA, Scheidle H, Jones KM, Niehaus K, Becker A, Walker GC (2003)
Journal of Bacteriology 185(13): 3853-3862.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Although the role that lipopolysaccharide (LPS) plays in the symbiosis between Sinorhizobium meliloti and alfalfa has been studied for over a decade, its function in this process remains controversial and poorly understood. This is largely due to a lack of mutants affected by its synthesis. In one of the definitive studies concerning this issue, Clover et al. (R. H. Clover, J. Kieber, and E. R. Signer, J. Bacteriol. 171:3961-3967, 1989) identified a series of mutants with putative LPS defects, judged them to be symbiotically proficient on Medicago sativa, and concluded that LPS might not have a symbiotic function in S. meliloti. The mutations in these strains were never characterized at the molecular level nor was the LPS from most of them analyzed. We have transduced these mutations from the Rm2011 background from which they were originally isolated into the sequenced strain Rm1021 and have characterized the resulting strains in greater detail. We found the LPS from these mutants to display a striking complexity of phenotypes on polyacrylamide electrophoresis gels, including additional rough LPS bands and alterations in the molecular weight distribution of the smooth LPS. We found that some of the mutants contain insertions in genes that are predicted to be involved in the synthesis of carbohydrate components of LPS, including ddhB, IpsB, lpsC, and lpsE. The majority, however, code for proteins predicted to be involved in a wide variety of functions not previously recognized to play a role in LPS synthesis, including a possible transcription elongation factor (GreA), a possible queuine synthesis protein, and a possible chemotaxis protein. Furthermore, using more extensive assays, we have found that most of these strains have symbiotic deficiencies. These results support more recent findings that alterations in LPS structure can affect the ability of S. meliloti to form an effective symbiosis.
Erscheinungsjahr
Zeitschriftentitel
Journal of Bacteriology
Band
185
Zeitschriftennummer
13
Seite
3853-3862
PUB-ID

Zitieren

Campbell GRO, Sharypova LA, Scheidle H, et al. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology. 2003;185(13):3853-3862.
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, K., Becker, A., & Walker, G. C. (2003). Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology, 185(13), 3853-3862. doi:10.1128/JB.185.13.3853.2003
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, K., Becker, A., and Walker, G. C. (2003). Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology 185, 3853-3862.
Campbell, G.R.O., et al., 2003. Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology, 185(13), p 3853-3862.
G.R.O. Campbell, et al., “Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants”, Journal of Bacteriology, vol. 185, 2003, pp. 3853-3862.
Campbell, G.R.O., Sharypova, L.A., Scheidle, H., Jones, K.M., Niehaus, K., Becker, A., Walker, G.C.: Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants. Journal of Bacteriology. 185, 3853-3862 (2003).
Campbell, G. R. O., Sharypova, L. A., Scheidle, H., Jones, K. M., Niehaus, Karsten, Becker, A., and Walker, G. C. “Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants”. Journal of Bacteriology 185.13 (2003): 3853-3862.

46 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Symbiotic use of pathogenic strategies: rhizobial protein secretion systems.
Deakin WJ, Broughton WJ., Nat Rev Microbiol 7(4), 2009
PMID: 19270720
Importance of proteins controlling initiation of DNA replication in the growth of the high-pressure-loving bacterium Photobacterium profundum SS9.
El-Hajj ZW, Tryfona T, Allcock DJ, Hasan F, Lauro FM, Sawyer L, Bartlett DH, Ferguson GP., J Bacteriol 191(20), 2009
PMID: 19700526
Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants.
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A., Mol Plant Microbe Interact 21(2), 2008
PMID: 18184066
Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899.
Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E., Environ Microbiol 10(5), 2008
PMID: 18312393
Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature.
Vriezen JA, de Bruijn FJ, Nüsslein K., Appl Environ Microbiol 73(11), 2007
PMID: 17400779
LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range.
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EM, Albrektsen AS, James EK, Thirup S, Stougaard J., EMBO J 26(17), 2007
PMID: 17690687
Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro.
Stepanova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S., J Bacteriol 189(24), 2007
PMID: 17766423
Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12.
Campbell GR, Taga ME, Mistry K, Lloret J, Anderson PJ, Roth JR, Walker GC., Proc Natl Acad Sci U S A 103(12), 2006
PMID: 16537439
CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti.
Gibson KE, Campbell GR, Lloret J, Walker GC., J Bacteriol 188(12), 2006
PMID: 16740957
Epitope tagging of legume root nodule extensin modifies protein structure and crosslinking in cell walls of transformed tobacco leaves.
Gucciardo S, Rathbun EA, Shanks M, Jenkyns S, Mak L, Durrant MC, Brewin NJ., Mol Plant Microbe Interact 18(1), 2005
PMID: 15672815
Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis.
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC., Mol Plant Microbe Interact 18(5), 2005
PMID: 15915643
Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants.
Wielbo J, Mazur A, Król J, Marczak M, Kutkowska J, Skorupska A., Arch Microbiol 182(4), 2004
PMID: 15349716

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12813079
PubMed | Europe PMC

Suchen in

Google Scholar