Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope

Brand S, Niehaus K, Pühler A, Kalinowski J (2003)
Archives of Microbiology 180(1): 33-44.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Abstract
By data mining in the sequence of the Corynebacterium glutamicum ATCC 13032 genome, six putative mycolyltransferase genes were identified that code for proteins with similarity to the N-terminal domain of the mycolic acid transferase PS1 of the related C. glutamicum strain ATCC 17965. The genes identified were designated cop1, cmt1, cmt2, cmt3, cmt4, and cmt5 (cmt from corynebacterium mycolyltransferases). cop1 encodes a protein of 657 amino acids, which is larger than the proteins encoded by the cmt genes with 365, 341, 483, 483, and 411 amino acids. Using bioinformatics tools, it was shown that all six gene products are equipped with signal peptides and esterase domains. Proteome analyses of the cell envelope of C. glutamicum ATCC 13032 resulted in identification of the proteins Cop1, Cmt1, Cmt2, and Cmt4. All six mycolyltransferase genes were used for mutational analysis. cmt4 could not be mutated and is considered to be essential. cop1 was found to play an additional role in cell shape formation. A triple mutant carrying mutations in cop1, cmt1, and cmt2 aggregated when cultivated in MM1 liquid medium. This mutant was also no longer able to synthesize trehalose dicorynomycolate (TDCM). Since single and double mutants of the genes cop1, cmt1, and cmt2 could form TDCM, it is concluded that the three genes, cop1, cmt1, and cmt2, are involved in TDCM biosynthesis. The presence of the putative esterase domain makes it highly possible that cop1, cmt1, and cmt2 encode enzymes synthesizing TDCM from trehalose monocorynomycolate.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Brand S, Niehaus K, Pühler A, Kalinowski J. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology. 2003;180(1):33-44.
Brand, S., Niehaus, K., Pühler, A., & Kalinowski, J. (2003). Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology, 180(1), 33-44. doi:10.1007/s00203-003-0556-1
Brand, S., Niehaus, K., Pühler, A., and Kalinowski, J. (2003). Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology 180, 33-44.
Brand, S., et al., 2003. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology, 180(1), p 33-44.
S. Brand, et al., “Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope”, Archives of Microbiology, vol. 180, 2003, pp. 33-44.
Brand, S., Niehaus, K., Pühler, A., Kalinowski, J.: Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Archives of Microbiology. 180, 33-44 (2003).
Brand, S., Niehaus, Karsten, Pühler, Alfred, and Kalinowski, Jörn. “Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope”. Archives of Microbiology 180.1 (2003): 33-44.
This data publication is cited in the following publications:
This publication cites the following data publications:

28 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rögner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 12740729
PubMed | Europe PMC

Search this title in

Google Scholar