Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace

Ahlswede R, Aydinian H, Khachatrian L (2003)
In: COMBINATORICA. 23. SPRINGER-VERLAG: 5-22.

Conference Paper | Published | English

No fulltext has been uploaded

Publishing Year
ISSN
PUB-ID

Cite this

Ahlswede R, Aydinian H, Khachatrian L. Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. In: COMBINATORICA. Vol 23. SPRINGER-VERLAG; 2003: 5-22.
Ahlswede, R., Aydinian, H., & Khachatrian, L. (2003). Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. COMBINATORICA, 23(1), 5-22.
Ahlswede, R., Aydinian, H., and Khachatrian, L. (2003). “Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace” in COMBINATORICA, vol. 23, (SPRINGER-VERLAG), 5-22.
Ahlswede, R., Aydinian, H., & Khachatrian, L., 2003. Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. In COMBINATORICA. no.23 SPRINGER-VERLAG, pp. 5-22.
R. Ahlswede, H. Aydinian, and L. Khachatrian, “Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace”, COMBINATORICA, vol. 23, SPRINGER-VERLAG, 2003, pp.5-22.
Ahlswede, R., Aydinian, H., Khachatrian, L.: Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace. COMBINATORICA. 23, p. 5-22. SPRINGER-VERLAG (2003).
Ahlswede, Rudolf, Aydinian, Haratyun, and Khachatrian, L. “Maximum number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace”. COMBINATORICA. SPRINGER-VERLAG, 2003.Vol. 23. 5-22.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar