The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi

Hohnjec N, Perlick AM, Pühler A, Küster H (2003)
Mol Plant Microbe Interact 16(10): 903-915.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
The MtSucS1 gene encodes a sucrose synthase (EC 2.4.1.13) in the model legume Medicago truncatula. To determine the expression pattern of this gene in different organs and in particular during root endosymbioses, we transformed M. truncatula with specific regions of MtSucS1 fused to the gusAint reporter gene. These fusions directed an induction to the vasculature of leaves, stems, and roots as well as to flowers, developing seeds, young pods, and germinating seedlings. In root nodules, strong promoter activity occurred in the infected cells of the nitrogen-fixing zone but was additionally observed in the meristematic region, the prefixing zone, and the inner cortex, including the vasculature. Concerning endomycorrhizal roots, the MtSucS1 promoter mediated strongest expression in cortical cells harboring arbuscules. Specifically in highly colonized root sections, GUS-staining was furthermore detected in the surrounding cortical cells, irrespective of a direct contact with fungal structures. In accordance with the presence of an orthologous PsSus1 gene, we observed a comparable regulation of MtSucS1 expression in the grain legume Pisum sativum in response to microbial symbionts. Unlike other members of the MtSucS gene family, the presence of rhizobial or Glomus microsymbionts significantly altered and enhanced MtSucS1 gene expression, leading us to propose that MtSucS1 is involved in generating sink-strength, not only in root nodules but also in mycorrhizal roots.
Publishing Year
ISSN
PUB-ID

Cite this

Hohnjec N, Perlick AM, Pühler A, Küster H. The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact. 2003;16(10):903-915.
Hohnjec, N., Perlick, A. M., Pühler, A., & Küster, H. (2003). The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact, 16(10), 903-915.
Hohnjec, N., Perlick, A. M., Pühler, A., and Küster, H. (2003). The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16, 903-915.
Hohnjec, N., et al., 2003. The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact, 16(10), p 903-915.
N. Hohnjec, et al., “The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi”, Mol Plant Microbe Interact, vol. 16, 2003, pp. 903-915.
Hohnjec, N., Perlick, A.M., Pühler, A., Küster, H.: The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact. 16, 903-915 (2003).
Hohnjec, N., Perlick, A. M., Pühler, Alfred, and Küster, Helge. “The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi”. Mol Plant Microbe Interact 16.10 (2003): 903-915.
This data publication is cited in the following publications:
This publication cites the following data publications:

36 Citations in Europe PMC

Data provided by Europe PubMed Central.

EcoTILLING revealed SNPs in GhSus genes that are associated with fiber- and seed-related traits in upland cotton.
Zeng YD, Sun JL, Bu SH, Deng KS, Tao T, Zhang YM, Zhang TZ, Du XM, Zhou BL., Sci Rep 6(), 2016
PMID: 27385639
Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.
Samac DA, Bucciarelli B, Miller SS, Yang SS, O'Rourke JA, Shin S, Vance CP., BMC Plant Biol. 15(), 2015
PMID: 26627884
The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.
Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bucking H., Plant Signal Behav 7(11), 2012
PMID: 22990447
Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea.
Clemow SR, Clairmont L, Madsen LH, Guinel FC., Plant Methods 7(), 2011
PMID: 22172023
Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).
Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C., Planta 231(2), 2010
PMID: 19898977
Apoplastic invertases: Multi-faced players in the arbuscular mycorrhization.
Schaarschmidt S, Hause B., Plant Signal Behav 3(5), 2008
PMID: 19841657

70 References

Data provided by Europe PubMed Central.

The broad bean nodulin VfENOD18 is a member of a novel family of plant proteins with homologies to the bacterial MJ0577 superfamily.
Hohnjec N, Kuster H, Albus U, Frosch SC, Becker JD, Puhler A, Perlick AM, Fruhling M., Mol. Gen. Genet. 264(3), 2000
PMID: 11085263

Bago, Plant and Soil 244(1/2), 2002
Phosphate transport in plants
Smith, Plant and Soil 248(1/2), 2003
Intrinsic GUS-like activities in seed plants
Hu, Plant Cell Reports 9(1), 1990
Nodulation and nitrogen fixation mutants of pea, Pisum sativum.
Engvild KC., Theor. Appl. Genet. 74(6), 1987
PMID: IND87089897
The Shrunken gene on chromosome 9 of Zea mays L is expressed in various plant tissues and encodes an anaerobic protein.
Springer B, Werr W, Starlinger P, Bennett DC, Zokolica M, Freeling M., Mol. Gen. Genet. 205(3), 1986
PMID: 2436026
The enzymatic deficiency conditioned by the shrunken-1 mutations in maize.
Chourey PS, Nelson OE., Biochem. Genet. 14(11-12), 1976
PMID: 1016220
NewAgrobacterium helper plasmids for gene transfer to plants
Hood, Transgenic Research 2(4), 1993
Strategies of arbuscular mycorrhizal fungi when infecting host plants.
Bonfante P, Perotto S., New Phytol. 130(1), 1995
PMID: IND20555279
Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces?
GIANINAZZI-PEARSON, New Phytologist 117(1), 1991
Carbohydrates and carbohydrate enzymes in developing cotton ovules
Hendrix, Physiologia Plantarum 78(1), 1990
Nodule-specific gene expression
Pawlowski, Physiologia Plantarum 99(4), 1997
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing.
Gardner RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Messing J., Nucleic Acids Res. 9(12), 1981
PMID: 6269062
Development of a vesicular-arbuscular mycorrhiza in bean roots
Holley, Botany 57(19), 1979
Medicago truncatula, a model plant for studying the molecular genetics of theRhizobium-legume symbiosis
Barker, Plant Molecular Biology Reporter 8(1), 1990

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 14558692
PubMed | Europe PMC

Search this title in

Google Scholar