Bioinformatics support for high-throughput proteomics

Wilke A, Rückert C, Bartels D, Dondrup M, Goesmann A, Hüser AT, Kespohl S, Linke B, Mahne M, McHardy A, Pühler A, et al. (2003)
JOURNAL OF BIOTECHNOLOGY 106(2-3): 147-156.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteome data. The rapid advancement of this technique in combination with other methods used in proteomics results in an increasing number of high-throughput projects. This leads to an increasing amount of data that needs to be archived and analyzed. To cope with the need for automated data conversion, storage, and analysis in the field of proteomics, the open source system ProDB was developed. The system handles data conversion from different mass spectrometer software, automates data analysis, and allows the annotation of MS spectra (e.g. assign gene names, store data on protein modifications). The system is based on an extensible relational database to store the mass spectra together with the experimental setup. It also provides a graphical user interface (GUI) for managing the experimental steps which led to the MS data. Furthermore, it allows the integration of genome and proteome data. Data from an ongoing experiment was used to compare manual and automated analysis. First tests showed that the automation resulted in a significant saving of time. Furthermore, the quality and interpretability of the results was improved in all cases. (C) 2003 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Wilke A, Rückert C, Bartels D, et al. Bioinformatics support for high-throughput proteomics. JOURNAL OF BIOTECHNOLOGY. 2003;106(2-3):147-156.
Wilke, A., Rückert, C., Bartels, D., Dondrup, M., Goesmann, A., Hüser, A. T., Kespohl, S., et al. (2003). Bioinformatics support for high-throughput proteomics. JOURNAL OF BIOTECHNOLOGY, 106(2-3), 147-156.
Wilke, A., Rückert, C., Bartels, D., Dondrup, M., Goesmann, A., Hüser, A. T., Kespohl, S., Linke, B., Mahne, M., McHardy, A., et al. (2003). Bioinformatics support for high-throughput proteomics. JOURNAL OF BIOTECHNOLOGY 106, 147-156.
Wilke, A., et al., 2003. Bioinformatics support for high-throughput proteomics. JOURNAL OF BIOTECHNOLOGY, 106(2-3), p 147-156.
A. Wilke, et al., “Bioinformatics support for high-throughput proteomics”, JOURNAL OF BIOTECHNOLOGY, vol. 106, 2003, pp. 147-156.
Wilke, A., Rückert, C., Bartels, D., Dondrup, M., Goesmann, A., Hüser, A.T., Kespohl, S., Linke, B., Mahne, M., McHardy, A., Pühler, A., Meyer, F.: Bioinformatics support for high-throughput proteomics. JOURNAL OF BIOTECHNOLOGY. 106, 147-156 (2003).
Wilke, A., Rückert, Christian, Bartels, D., Dondrup, M, Goesmann, Alexander, Hüser, A. T., Kespohl, S., Linke, B., Mahne, M., McHardy, A., Pühler, Alfred, and Meyer, F. “Bioinformatics support for high-throughput proteomics”. JOURNAL OF BIOTECHNOLOGY 106.2-3 (2003): 147-156.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics.
Nebrich G, Herrmann M, Hartl D, Diedrich M, Kreitler T, Wierling C, Klose J, Giavalisco P, Zabel C, Mao L., Proteomics 9(7), 2009
PMID: 19259999
Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes.
Stenuit B, Eyers L, Schuler L, Agathos SN, George I., Biotechnol. Adv. 26(6), 2008
PMID: 18725284
MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data.
Hartler J, Thallinger GG, Stocker G, Sturn A, Burkard TR, Korner E, Rader R, Schmidt A, Mechtler K, Trajanoski Z., BMC Bioinformatics 8(), 2007
PMID: 17567892
SAMPI: protein identification with mass spectra alignments.
Kaltenbach HM, Wilke A, Bocker S., BMC Bioinformatics 8(), 2007
PMID: 17386090
MASCOT HTML and XML parser: an implementation of a novel object model for protein identification data.
Yang CG, Granite SJ, Van Eyk JE, Winslow RL., Proteomics 6(21), 2006
PMID: 17006878
BRIGEP--the BRIDGE-based genome-transcriptome-proteome browser.
Goesmann A, Linke B, Bartels D, Dondrup M, Krause L, Neuweger H, Oehm S, Paczian T, Wilke A, Meyer F., Nucleic Acids Res. 33(Web Server issue), 2005
PMID: 15980569
PROTICdb: a web-based application to store, track, query, and compare plant proteome data.
Ferry-Dumazet H, Houel G, Montalent P, Moreau L, Langella O, Negroni L, Vincent D, Lalanne C, de Daruvar A, Plomion C, Zivy M, Joets J., Proteomics 5(8), 2005
PMID: 15846840
Bioinformatics in mass spectrometry data analysis for proteomics studies.
Cristoni S, Bernardi LR., Expert Rev Proteomics 1(4), 2004
PMID: 15966842
Technology for high-throughput screens: the present and future using zebrafish.
Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR., Curr. Opin. Biotechnol. 15(6), 2004
PMID: 15560983
PEDRo: a database for storing, searching and disseminating experimental proteomics data.
Garwood K, McLaughlin T, Garwood C, Joens S, Morrison N, Taylor CF, Carroll K, Evans C, Whetton AD, Hart S, Stead D, Yin Z, Brown AJ, Hesketh A, Chater K, Hansson L, Mewissen M, Ghazal P, Howard J, Lilley KS, Gaskell SJ, Brass A, Hubbard SJ, Oliver SG, Paton NW., BMC Genomics 5(), 2004
PMID: 15377392
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 14651857
PubMed | Europe PMC

Search this title in

Google Scholar