Atomic transient recorder

Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, et al. (2004)
NATURE 427(6977): 817-821.

Journal Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ; ; ; ;
In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10(-18) s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond ( 1 fs = 10(-15) s) extreme ultraviolet (XUV) light pulses(1) has stimulated the extension of techniques of femtochemistry(2) into the attosecond regime(3,4). Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse(5) obtains 'tomographic images' of the time-momentum distribution of the ejected electrons. Tomographic images of primary ( photo) electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary ( Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current similar to750-nm laser probe and similar to100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.
Publishing Year

Cite this

Kienberger R, Goulielmakis E, Uiberacker M, et al. Atomic transient recorder. NATURE. 2004;427(6977):817-821.
Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., et al. (2004). Atomic transient recorder. NATURE, 427(6977), 817-821.
Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., et al. (2004). Atomic transient recorder. NATURE 427, 817-821.
Kienberger, R., et al., 2004. Atomic transient recorder. NATURE, 427(6977), p 817-821.
R. Kienberger, et al., “Atomic transient recorder”, NATURE, vol. 427, 2004, pp. 817-821.
Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, T., Kleineberg, U., Heinzmann, U., Drescher, M., Krausz, F.: Atomic transient recorder. NATURE. 427, 817-821 (2004).
Kienberger, R, Goulielmakis, E, Uiberacker, M, Baltuska, A, Yakovlev, V, Bammer, F, Scrinzi, A, Westerwalbesloh, T, Kleineberg, U, Heinzmann, Ulrich, Drescher, Markus, and Krausz, F. “Atomic transient recorder”. NATURE 427.6977 (2004): 817-821.
This data publication is cited in the following publications:
This publication cites the following data publications:

118 Citations in Europe PMC

Data provided by Europe PubMed Central.

Structural evolution of the methane cation in subfemtosecond photodynamics.
Mondal T, Varandas AJ., J Chem Phys 143(1), 2015
PMID: 26156480
Ultrafast molecular orbital imaging based on attosecond photoelectron diffraction.
Li Y, Qin M, Zhu X, Zhang Q, Lan P, Lu P., Opt Express 23(8), 2015
PMID: 25969107
Revealing the time-dependent polarization of ultrashort pulses with sub-cycle resolution.
Boge R, Heuser S, Sabbar M, Lucchini M, Gallmann L, Cirelli C, Keller U., Opt Express 22(22), 2014
PMID: 25401846
Suppression of driving laser in high harmonic generation with a microchannel plate.
Zhang Q, Zhao K, Li J, Chini M, Cheng Y, Wu Y, Cunningham E, Chang Z., Opt Lett 39(12), 2014
PMID: 24978564
Wavefront analysis of high-efficiency, large-scale, thin transmission gratings.
Zhou C, Seki T, Kitamura T, Kuramoto Y, Sukegawa T, Ishii N, Kanai T, Itatani J, Kobayashi Y, Watanabe S., Opt Express 22(5), 2014
PMID: 24663936
Effects of driving laser jitter on the attosecond streaking measurement.
Zhong S, He X, Ye P, Zhan M, Teng H, Wei Z., Opt Express 21(15), 2013
PMID: 23938620
Attosecond pulse characterization.
Laurent G, Cao W, Ben-Itzhak I, Cocke CL., Opt Express 21(14), 2013
PMID: 23938540
Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.
De Giovannini U, Brunetto G, Castro A, Walkenhorst J, Rubio A., Chemphyschem 14(7), 2013
PMID: 23520148
Compression methods for XUV attosecond pulses.
Mero M, Frassetto F, Villoresi P, Poletto L, Varju K., Opt Express 19(23), 2011
PMID: 22109218
Observation of non-odd order harmonics by sub-2-cycle laser pulses.
Teng H, Yun CX, He XK, Zhang W, Wang LF, Zhan MJ, Wang BB, Wei ZY., Opt Express 19(18), 2011
PMID: 21935106
Physics. When does photoemission begin?
van der Hart HW., Science 328(5986), 2010
PMID: 20576879
Relativistic MeV photoelectrons from the single atom response of argon to a 10 19 W/cm2 laser field.
DiChiara AD, Ghebregziabher I, Sauer R, Waesche J, Palaniyappan S, Wen BL, Walker BC., Phys. Rev. Lett. 101(17), 2008
PMID: 18999745
Attosecond resolved charging of ions in a rare-gas cluster.
Georgescu I, Saalmann U, Rost JM., Phys. Rev. Lett. 99(18), 2007
PMID: 17995403
Nondipole ionization dynamics of atoms in superintense high-frequency attosecond pulses.
Forre M, Hansen JP, Kocbach L, Selsto S, Madsen LB., Phys. Rev. Lett. 97(4), 2006
PMID: 16907572
Use of electron correlation to make attosecond measurements without attosecond pulses.
Smirnova O, Yakovlev VS, Ivanov M., Phys. Rev. Lett. 94(21), 2005
PMID: 16090316


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 14985755
PubMed | Europe PMC

Search this title in

Google Scholar