What can bacterial genome research teach us about bacteria-plant interactions?

Pühler A, Arlat M, Becker A, Gottfert M, Morrissey JP, O'Gara F (2004)
Current Opinion in Plant Biology 7(2): 137-147.

Journal Article | Published | English

No fulltext has been uploaded

; ; ; ; ;
Biological research is changing dramatically. Genomic and post-genomic research is responsible for the accumulation of enormous datasets, which allow the formation of holistic views of the organisms under investigation. In the field of microbiology, bacteria represent ideal candidates for this new development. It is relatively easy to sequence the genomes of bacteria, to analyse their transcriptomes and to collect information at the proteomic level. Genome research on symbiotic, pathogenic and associative bacteria is providing important information on bacteria-plant interactions, especially on type-III secretion systems (TTSS) and their role in the interaction of bacteria with plants.
Publishing Year

Cite this

Pühler A, Arlat M, Becker A, Gottfert M, Morrissey JP, O'Gara F. What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology. 2004;7(2):137-147.
Pühler, A., Arlat, M., Becker, A., Gottfert, M., Morrissey, J. P., & O'Gara, F. (2004). What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology, 7(2), 137-147.
Pühler, A., Arlat, M., Becker, A., Gottfert, M., Morrissey, J. P., and O'Gara, F. (2004). What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology 7, 137-147.
Pühler, A., et al., 2004. What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology, 7(2), p 137-147.
A. Pühler, et al., “What can bacterial genome research teach us about bacteria-plant interactions?”, Current Opinion in Plant Biology, vol. 7, 2004, pp. 137-147.
Pühler, A., Arlat, M., Becker, A., Gottfert, M., Morrissey, J.P., O'Gara, F.: What can bacterial genome research teach us about bacteria-plant interactions? Current Opinion in Plant Biology. 7, 137-147 (2004).
Pühler, Alfred, Arlat, M, Becker, A, Gottfert, M, Morrissey, JP, and O'Gara, F. “What can bacterial genome research teach us about bacteria-plant interactions?”. Current Opinion in Plant Biology 7.2 (2004): 137-147.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.
Geetha SJ, Joshi SJ., ScientificWorldJournal 2013(), 2013
PMID: 24319357
Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
Barkla BJ, Castellanos-Cervantes T, de Leon JL, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zorb C., Proteomics 13(12-13), 2013
PMID: 23723162
Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing.
Monteiro RA, Balsanelli E, Tuleski T, Faoro H, Cruz LM, Wassem R, de Baura VA, Tadra-Sfeir MZ, Weiss V, DaRocha WD, Muller-Santos M, Chubatsu LS, Huergo LF, Pedrosa FO, de Souza EM., FEMS Microbiol. Ecol. 80(2), 2012
PMID: 22268687
Strategies for bacterial tagging and gene expression in plant-host colonization studies
Ramos HJO, Yates MG, Pedrosa FO, Souza EM., Soil Biol. Biochem. 43(8), 2011
PMID: IND44599181
PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall.
Li JG, Liu HX, Cao J, Chen LF, Gu C, Allen C, Guo JH., Mol. Plant Pathol. 11(3), 2010
PMID: 20447285
Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris.
Boulanger A, Dejean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E., J. Bacteriol. 192(6), 2010
PMID: 20081036
Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens.
Moynihan JA, Morrissey JP, Coppoolse ER, Stiekema WJ, O'Gara F, Boyd EF., Appl. Environ. Microbiol. 75(7), 2009
PMID: 19181839
Plant-pathogen interactions: what is proteomics telling us?
Mehta A, Brasileiro AC, Souza DS, Romano E, Campos MA, Grossi-de-Sa MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL., FEBS J. 275(15), 2008
PMID: 18616468
The Type III secretion system of Xanthomonas fuscans subsp. fuscans is involved in the phyllosphere colonization process and in transmission to seeds of susceptible beans.
Darsonval A, Darrasse A, Meyer D, Demarty M, Durand K, Bureau C, Manceau C, Jacques MA., Appl. Environ. Microbiol. 74(9), 2008
PMID: 18326683
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M., PLoS ONE 2(2), 2007
PMID: 17311090
Perception and modification of plant flavonoid signals by rhizosphere microorganisms.
Shaw LJ, Morris P, Hooker JE., Environ. Microbiol. 8(11), 2006
PMID: 17014487
The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells.
Kiselev KV, Kusaykin MI, Dubrovina AS, Bezverbny DA, Zvyagintseva TN, Bulgakov VP., Phytochemistry 67(20), 2006
PMID: 16950484
PopF1 and PopF2, two proteins secreted by the type III protein secretion system of Ralstonia solanacearum, are translocators belonging to the HrpF/NopX family.
Meyer D, Cunnac S, Gueneron M, Declercq C, Van Gijsegem F, Lauber E, Boucher C, Arlat M., J. Bacteriol. 188(13), 2006
PMID: 16788199
Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications.
Mark G, Morrissey JP, Higgins P, O'gara F., FEMS Microbiol. Ecol. 56(2), 2006
PMID: 16629747
Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere.
Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O'Gara F., Microb. Ecol. 51(3), 2006
PMID: 16596439
Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology applications.
Dandie CE, Larrainzar E, Mark GL, O'gara F, Morrissey JP., Environ. Microbiol. 7(11), 2005
PMID: 16232296
Applications of autofluorescent proteins for in situ studies in microbial ecology.
Larrainzar E, O'Gara F, Morrissey JP., Annu. Rev. Microbiol. 59(), 2005
PMID: 16153170
Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing.
Handschur M, Pinar G, Gallist B, Lubitz W, Haslberger AG., Food Chem. Toxicol. 43(11), 2005
PMID: 15993997

75 References

Data provided by Europe PubMed Central.

High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234.
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R., Mol. Microbiol. 32(2), 1999
PMID: 10231496
Quorum-sensing in Rhizobium.
Wisniewski-Dye F, Downie JA., Antonie Van Leeuwenhoek 81(1-4), 2002
PMID: 12448738
Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements.
Nunes LR, Rosato YB, Muto NH, Yanai GM, da Silva VS, Leite DB, Goncalves ER, de Souza AA, Coletta-Filho HD, Machado MA, Lopes SA, de Oliveira RC., Genome Res. 13(4), 2003
PMID: 12670998
Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.
Scarpari LM, Lambais MR, Silva DS, Carraro DM, Carrer H., FEMS Microbiol. Lett. 222(1), 2003
PMID: 12757950
Transcriptome analysis of Sinorhizobium meliloti during symbiosis.
Ampe F, Kiss E, Sabourdy F, Batut J., Genome Biol. 4(2), 2003
PMID: 12620125
The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments.
Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Davila G., Genome Biol. 4(6), 2003
PMID: 12801410
Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3.
Encarnacion S, Guzman Y, Dunn MF, Hernandez M, del Carmen Vargas M, Mora J., Proteomics 3(6), 2003
PMID: 12833533
Common infection strategies of plant and animal pathogenic bacteria.
Buttner D, Bonas U., Curr. Opin. Plant Biol. 6(4), 2003
PMID: 12873524
The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000.
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A., Proc. Natl. Acad. Sci. U.S.A. 100(18), 2003
PMID: 12928499
A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule.
Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, Dow JM, Williams P, Daniels MJ., Mol. Microbiol. 24(3), 1997
PMID: 9179849
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
New Rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins.
Guerreiro N, Redmond JW, Rolfe BG, Djordjevic MA., Mol. Plant Microbe Interact. 10(4), 1997
PMID: 9150598
Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria.
Cha C, Gao P, Chen YC, Shaw PD, Farrand SK., Mol. Plant Microbe Interact. 11(11), 1998
PMID: 9805399
Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens.
de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ., Mol. Plant Microbe Interact. 15(11), 2002
PMID: 12423023
Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum.
Krause A, Doerfel A, Gottfert M., Mol. Plant Microbe Interact. 15(12), 2002
PMID: 12481995
Biocontrol traits of Pseudomonas spp. are regulated by phase variation.
van den Broek D, Chin-A-Woeng TF, Eijkemans K, Mulders IH, Bloemberg GV, Lugtenberg BJ., Mol. Plant Microbe Interact. 16(11), 2003
PMID: 14601668
A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation.
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF; Sinorhizobium DNA Sequencing Consortium., Mol. Plant Microbe Interact. 16(6), 2003
PMID: 12795377
Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.
Marie C, Deakin WJ, Viprey V, Kopcinska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ., Mol. Plant Microbe Interact. 16(9), 2003
PMID: 12971597
Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxAB mutagenesis.
Milcamps A, Ragatz DM, Lim P, Berger KA, de Bruijn FJ., Microbiology (Reading, Engl.) 144 ( Pt 11)(), 1998
PMID: 9846756


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 15003213
PubMed | Europe PMC

Search this title in

Google Scholar