Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex

Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz K-J (2004)
BMC Cell Biology 5(1).

Download
OA
Journal Article | Published | English
Author
; ; ; ; ; ; ; ; ;
Abstract
Background: Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different ( VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques ( FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed. Results: To elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: ( i) co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, ( ii) immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii) in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP) in transfected cells. Conclusions: All three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit ( VHA-a) of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA-a may localize on distinct endomembrane compartments, as it was shown for its yeast counterpart Vph1.
Publishing Year
ISSN
PUB-ID

Cite this

Kluge C, Seidel T, Bolte S, et al. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 2004;5(1).
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., et al. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1).
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., and Dietz, K. - J. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology 5.
Kluge, C., et al., 2004. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1).
C. Kluge, et al., “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”, BMC Cell Biology, vol. 5, 2004.
Kluge, C., Seidel, T., Bolte, S., Sharma, S.S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., Dietz, K.-J.: Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 5, (2004).
Kluge, C, Seidel, Thorsten, Bolte, S, Sharma, S. S., Hanitzsch, M, Satiat-Jeunemaitre, B, Ross, J, Sauer, Markus, Golldack, Dortje, and Dietz, Karl-Josef. “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”. BMC Cell Biology 5.1 (2004).
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-02-19T13:28:48Z

This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

Vacuolar ATPase in phagosome-lysosome fusion.
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P., J. Biol. Chem. 290(22), 2015
PMID: 25903133
Quantification of Forster resonance energy transfer by monitoring sensitized emission in living plant cells.
Muller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins.
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T., Plant Cell Physiol. 54(10), 2013
PMID: 23903016
Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation.
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M., Plant Cell Physiol. 50(2), 2009
PMID: 19106119
Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis.
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ., BMC Cell Biol. 9(), 2008
PMID: 18507826
The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.
Diedhiou CJ, Popova OV, Dietz KJ, Golldack D., BMC Plant Biol. 8(), 2008
PMID: 18442365
A guided tour into subcellular colocalization analysis in light microscopy.
Bolte S, Cordelieres FP., J Microsc 224(Pt 3), 2006
PMID: 17210054
ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant.
Alemzadeh A, Fujie M, Usami S, Yoshizaki T, Oyama K, Kawabata T, Yamada T., J. Biosci. Bioeng. 102(5), 2006
PMID: 17189165
Endomembrane proton pumps: connecting membrane and vesicle transport.
Schumacher K., Curr. Opin. Plant Biol. 9(6), 2006
PMID: 17008121
Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta.
Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K., Plant J. 48(2), 2006
PMID: 16984403
Show and tell: cell biology of pathogen invasion.
Koh S, Somerville S., Curr. Opin. Plant Biol. 9(4), 2006
PMID: 16714141
Quantitative fluorescence microscopy: from art to science.
Fricker M, Runions J, Moore I., Annu Rev Plant Biol 57(), 2006
PMID: 16669756
The plant Golgi apparatus--going with the flow.
Hawes C, Satiat-Jeunemaitre B., Biochim. Biophys. Acta 1744(2), 2005
PMID: 15922463

52 References

Data provided by Europe PubMed Central.

GFP-based FRET microscopy in living plant cells.
Gadella TW Jr, van der Krogt GN , Bisseling T., Trends Plant Sci. 4(7), 1999
PMID: 10407445

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15310389
PubMed | Europe PMC

Search this title in

Google Scholar