Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex

Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz K-J (2004)
BMC Cell Biology 5(1): 29.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Background: Vacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different ( VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques ( FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed. Results: To elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: ( i) co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, ( ii) immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii) in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP) in transfected cells. Conclusions: All three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit ( VHA-a) of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA-a may localize on distinct endomembrane compartments, as it was shown for its yeast counterpart Vph1.
Erscheinungsjahr
Zeitschriftentitel
BMC Cell Biology
Band
5
Zeitschriftennummer
1
Seite
29
ISSN
PUB-ID

Zitieren

Kluge C, Seidel T, Bolte S, et al. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 2004;5(1):29.
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., et al. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1), 29. doi:10.1186/1471-2121-5-29
Kluge, C., Seidel, T., Bolte, S., Sharma, S. S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., and Dietz, K. - J. (2004). Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology 5, 29.
Kluge, C., et al., 2004. Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology, 5(1), p 29.
C. Kluge, et al., “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”, BMC Cell Biology, vol. 5, 2004, pp. 29.
Kluge, C., Seidel, T., Bolte, S., Sharma, S.S., Hanitzsch, M., Satiat-Jeunemaitre, B., Ross, J., Sauer, M., Golldack, D., Dietz, K.-J.: Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. BMC Cell Biology. 5, 29 (2004).
Kluge, C, Seidel, Thorsten, Bolte, S, Sharma, S. S., Hanitzsch, M, Satiat-Jeunemaitre, B, Ross, J, Sauer, Markus, Golldack, Dortje, and Dietz, Karl-Josef. “Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex”. BMC Cell Biology 5.1 (2004): 29.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-19T13:28:48Z

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Vacuolar ATPase in phagosome-lysosome fusion.
Kissing S, Hermsen C, Repnik U, Nesset CK, von Bargen K, Griffiths G, Ichihara A, Lee BS, Schwake M, De Brabander J, Haas A, Saftig P., J Biol Chem 290(22), 2015
PMID: 25903133
Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins.
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T., Plant Cell Physiol 54(10), 2013
PMID: 23903016
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation.
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M., Plant Cell Physiol 50(2), 2009
PMID: 19106119
The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.
Diédhiou CJ, Popova OV, Dietz KJ, Golldack D., BMC Plant Biol 8(), 2008
PMID: 18442365
Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis.
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ., BMC Cell Biol 9(), 2008
PMID: 18507826
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol Cell Proteomics 5(1), 2006
PMID: 16207701
Quantitative fluorescence microscopy: from art to science.
Fricker M, Runions J, Moore I., Annu Rev Plant Biol 57(), 2006
PMID: 16669756
Show and tell: cell biology of pathogen invasion.
Koh S, Somerville S., Curr Opin Plant Biol 9(4), 2006
PMID: 16714141
Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta.
Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K., Plant J 48(2), 2006
PMID: 16984403
Endomembrane proton pumps: connecting membrane and vesicle transport.
Schumacher K., Curr Opin Plant Biol 9(6), 2006
PMID: 17008121
ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant.
Alemzadeh A, Fujie M, Usami S, Yoshizaki T, Oyama K, Kawabata T, Yamada T., J Biosci Bioeng 102(5), 2006
PMID: 17189165
A guided tour into subcellular colocalization analysis in light microscopy.
Bolte S, Cordelières FP., J Microsc 224(pt 3), 2006
PMID: 17210054
The plant Golgi apparatus--going with the flow.
Hawes C, Satiat-Jeunemaitre B., Biochim Biophys Acta 1744(2), 2005
PMID: 15922463
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett 579(20), 2005
PMID: 16061227

52 References

Daten bereitgestellt von Europe PubMed Central.

GFP-based FRET microscopy in living plant cells.
Gadella TW Jr, van der Krogt GN , Bisseling T., Trends Plant Sci. 4(7), 1999
PMID: 10407445

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15310389
PubMed | Europe PMC

Suchen in

Google Scholar