Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production

Yao SY, Luo L, Har KJ, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP (2004)
JOURNAL OF BACTERIOLOGY 186(18): 6042-6049.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
The production of the Sinorhizobium meliloti exopolysaccharide, succinoglycan, is required for the formation of infection threads inside root hairs, a critical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti. Two bacterial mutations, exoR95::Tn5 and exoS96::Tn5, resulted in the overproduction of succinoglycan and a reduction in symbiosis. Systematic analyses of the symbiotic phenotypes of the two mutants demonstrated their reduced efficiency of root hair colonization. In addition, both the exoR95 and exoS96 mutations caused a marked reduction in the biosynthesis of flagella and consequent loss of ability of the cells to swarm and swim. Succinoglycan overproduction did not appear to be the cause of the suppression of flagellum biosynthesis. Further analysis indicated that both the exoR95 and exoS96 mutations affected the expression of the flagellum biosynthesis genes. These findings suggest that both the ExoR protein and the ExoS/ChvI two-component regulatory system are involved in the regulation of both succinoglycan and flagellum biosynthesis. These findings provide new avenues of understanding of the physiological changes S. meliloti cells go through during the early stages of symbiosis and of the signal transduction pathways that mediate such changes.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF BACTERIOLOGY
Band
186
Zeitschriftennummer
18
Seite
6042-6049
ISSN
PUB-ID

Zitieren

Yao SY, Luo L, Har KJ, et al. Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production. JOURNAL OF BACTERIOLOGY. 2004;186(18):6042-6049.
Yao, S. Y., Luo, L., Har, K. J., Becker, A., Rüberg, S., Yu, G. Q., Zhu, J. B., et al. (2004). Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production. JOURNAL OF BACTERIOLOGY, 186(18), 6042-6049. doi:10.1128/jb.186.18.6042-6049.2004
Yao, S. Y., Luo, L., Har, K. J., Becker, A., Rüberg, S., Yu, G. Q., Zhu, J. B., and Cheng, H. P. (2004). Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production. JOURNAL OF BACTERIOLOGY 186, 6042-6049.
Yao, S.Y., et al., 2004. Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production. JOURNAL OF BACTERIOLOGY, 186(18), p 6042-6049.
S.Y. Yao, et al., “Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production”, JOURNAL OF BACTERIOLOGY, vol. 186, 2004, pp. 6042-6049.
Yao, S.Y., Luo, L., Har, K.J., Becker, A., Rüberg, S., Yu, G.Q., Zhu, J.B., Cheng, H.P.: Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production. JOURNAL OF BACTERIOLOGY. 186, 6042-6049 (2004).
Yao, S. Y., Luo, L., Har, K. J., Becker, Anke, Rüberg, Silvia, Yu, G. Q., Zhu, J. B., and Cheng, H. P. “Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and Flagellum production”. JOURNAL OF BACTERIOLOGY 186.18 (2004): 6042-6049.

59 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Brucella abortus senses the intracellular environment through the two-component system BvrR/BvrS allowing the adaptation to its replicative niche.
Altamirano-Silva P, Meza-Torres J, Castillo-Zeledón A, Ruiz-Villalobos N, Zuñiga-Pereira AM, Chacón-Díaz C, Moreno E, Guzmán-Verri C, Chaves-Olarte E., Infect Immun (), 2018
PMID: 29378792
The LsrB Protein Is Required for Agrobacterium tumefaciens Interaction with Host Plants.
Tang G, Li Q, Xing S, Li N, Tang Z, Yu L, Yan J, Li X, Luo L., Mol Plant Microbe Interact 31(9), 2018
PMID: 29547354
Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont.
Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC, Masson-Boivin C., Mol Biol Evol 34(10), 2017
PMID: 28535261
Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021.
Hawkins JP, Geddes BA, Oresnik IJ., Mol Plant Microbe Interact 30(12), 2017
PMID: 28871850
Chemotaxis signaling systems in model beneficial plant-bacteria associations.
Scharf BE, Hynes MF, Alexandre GM., Plant Mol Biol 90(6), 2016
PMID: 26797793
Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae.
Kress-Bennett JM, Hiller NL, Eutsey RA, Powell E, Longwell MJ, Hillman T, Blackwell T, Byers B, Mell JC, Post JC, Hu FZ, Ehrlich GD, Janto BA., PLoS One 11(3), 2016
PMID: 26977929
Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum.
Borland S, Oudart A, Prigent-Combaret C, Brochier-Armanet C, Wisniewski-Dyé F., BMC Genomics 16(), 2015
PMID: 26489830
Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium.
Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C., Front Plant Sci 5(), 2014
PMID: 24834068
Regulation of flagellar motility during biofilm formation.
Guttenplan SB, Kearns DB., FEMS Microbiol Rev 37(6), 2013
PMID: 23480406
The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.
Wang D, Xue H, Wang Y, Yin R, Xie F, Luo L., Appl Environ Microbiol 79(23), 2013
PMID: 24038694
The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti.
Fields AT, Navarrete CS, Zare AZ, Huang Z, Mostafavi M, Lewis JC, Rezaeihaghighi Y, Brezler BJ, Ray S, Rizzacasa AL, Barnett MJ, Long SR, Chen EJ, Chen JC., Mol Microbiol 84(5), 2012
PMID: 22553970
Sinorhizobium meliloti ExoR is the target of periplasmic proteolysis.
Lu HY, Luo L, Yang MH, Cheng HP., J Bacteriol 194(15), 2012
PMID: 22636773
Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress.
Gomes DF, Batista JS, Schiavon AL, Andrade DS, Hungria M., BMC Microbiol 12(), 2012
PMID: 22647150
Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide.
Dorken G, Ferguson GP, French CE, Poon WC., J R Soc Interface 9(77), 2012
PMID: 22896568
Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming.
Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ., BMC Genomics 11(), 2010
PMID: 20210991
Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system.
Viadas C, Rodríguez MC, Sangari FJ, Gorvel JP, García-Lobo JM, López-Goñi I., PLoS One 5(4), 2010
PMID: 20422049
Autoregulation of Sinorhizobium meliloti exoR gene expression.
Lu HY, Cheng HP., Microbiology 156(pt 7), 2010
PMID: 20413557
The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection.
Quebatte M, Dehio M, Tropel D, Basler A, Toller I, Raddatz G, Engel P, Huser S, Schein H, Lindroos HL, Andersson SG, Dehio C., J Bacteriol 192(13), 2010
PMID: 20418395
Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti.
Santos MR, Cosme AM, Becker JD, Medeiros JM, Mata MF, Moreira LM., BMC Microbiol 10(), 2010
PMID: 20573193
Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility.
Tomlinson AD, Ramey-Hartung B, Day TW, Merritt PM, Fuqua C., Microbiology 156(pt 9), 2010
PMID: 20576688
Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti.
Chen EJ, Fisher RF, Perovich VM, Sabio EA, Long SR., J Bacteriol 191(22), 2009
PMID: 19749054
Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti.
Guo H, Sun S, Eardly B, Finan T, Xu J., Genome 52(10), 2009
PMID: 19935910
Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti.
Hoang HH, Gurich N, González JE., J Bacteriol 190(3), 2008
PMID: 18024512
Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility.
Bahlawane C, McIntosh M, Krol E, Becker A., Mol Plant Microbe Interact 21(11), 2008
PMID: 18842098
Sel1-like repeat proteins in signal transduction.
Mittl PR, Schneider-Brachert W., Cell Signal 19(1), 2007
PMID: 16870393
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, González JE., J Bacteriol 189(19), 2007
PMID: 17644606
How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model.
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC., Nat Rev Microbiol 5(8), 2007
PMID: 17632573
Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J., Microb Cell Fact 5(), 2006
PMID: 16483356
Regulation of flagella.
McCarter LL., Curr Opin Microbiol 9(2), 2006
PMID: 16487743
Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255.
Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ., Appl Environ Microbiol 72(3), 2006
PMID: 16517654
Investigations of Rhizobium biofilm formation.
Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM., FEMS Microbiol Ecol 56(2), 2006
PMID: 16629750

38 References

Daten bereitgestellt von Europe PubMed Central.

Mutations in the extracellular protein secretion pathway genes (eps) interfere with rugose polysaccharide production in and motility of Vibrio cholerae.
Ali A, Johnson JA, Franco AA, Metzger DJ, Connell TD, Morris JG Jr, Sozhamannan S., Infect. Immun. 68(4), 2000
PMID: 10722590
Behavioral mutants of Rhizobium meliloti.
Ames P, Schluederberg SA, Bergman K., J. Bacteriol. 141(2), 1980
PMID: 7364717
Mutations in the two flagellin genes of Rhizobium meliloti.
Bergman K, Nulty E, Su LH., J. Bacteriol. 173(12), 1991
PMID: 2050631
Role of Motility and Chemotaxis in Efficiency of Nodulation by Rhizobium meliloti.
Caetano-Anolles G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G., Plant Physiol. 86(4), 1988
PMID: 16666059
Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA.
Cano DA, Dominguez-Bernal G, Tierrez A, Garcia-Del Portillo F, Casadesus J., Genetics 162(4), 2002
PMID: 12524328
Perception of lipo-chitooligosaccharidic Nod factors in legumes.
Cullimore JV, Ranjeva R, Bono JJ., Trends Plant Sci. 6(1), 2001
PMID: 11164374
Manufacturing DNA microarrays of high spot homogeneity and reduced background signal.
Diehl F, Grahlmann S, Beier M, Hoheisel JD., Nucleic Acids Res. 29(7), 2001
PMID: 11266573
Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide.
Doherty D, Leigh JA, Glazebrook J, Walker GC., J. Bacteriol. 170(9), 1988
PMID: 2842307
Plant responses to nodulation factors.
Downie JA, Walker SA., Curr. Opin. Plant Biol. 2(6), 1999
PMID: 10607652
Hanging by a thread: invasion of legume plants by rhizobia.
Gage DJ, Margolin W., Curr. Opin. Microbiol. 3(6), 2000
PMID: 11121782
The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae.
Guzman-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel JP, Moriyon I, Moreno E, Lopez-Goni I., Proc. Natl. Acad. Sci. U.S.A. 99(19), 2002
PMID: 12218183

AUTHOR UNKNOWN, 1992
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid.
Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ., Proc. Natl. Acad. Sci. U.S.A. 99(19), 2002
PMID: 12218184
A rapid, simple method for staining bacterial flagella.
Mayfield CI, Inniss WE., Can. J. Microbiol. 23(9), 1977
PMID: 71191
Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021.
Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN., J. Bacteriol. 176(7), 1994
PMID: 8144468
Isolation and characterization of Rhizobium meliloti mutants affected in exopolysaccharide production.
Rodriguez-Navarro DN, Palomares AJ, Casadesus J., Microbiologia 7(1), 1991
PMID: 1867774
A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence.
Sola-Landa A, Pizarro-Cerda J, Grillo MJ, Moreno E, Moriyon I, Blasco JM, Gorvel JP, Lopez-Goni I., Mol. Microbiol. 29(1), 1998
PMID: 9701808
The Rhizobium-plant symbiosis.
van Rhijn P, Vanderleyden J., Microbiol. Rev. 59(1), 1995
PMID: 7708010
Steps in the development of a Vibrio cholerae El Tor biofilm.
Watnick PI, Kolter R., Mol. Microbiol. 34(3), 1999
PMID: 10564499
Mechanisms of bacterial pathogenicity.
Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA., Postgrad Med J 78(918), 2002
PMID: 11930024

AUTHOR UNKNOWN, 2002

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15342573
PubMed | Europe PMC

Suchen in

Google Scholar