Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses

Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004)
Mol Plant-Microbe Interact 17(10): 1063-1077.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Transcriptome profiling based on cDNA array hybridizations and in silico screening was used to identify Medicago truncatula genes induced in both root nodules and arbuscular mycorrhiza (AM). By array hybridizations, we detected several hundred genes that were upregulated in the root nodule and the AM symbiosis, respectively, with a total of 75 genes being induced during both interactions. The second approach based on in silico data mining yielded several hundred additional candidate genes with a predicted symbiosis-enhanced expression. A subset of the genes identified by either expression profiling tool was subjected to quantitative real-time reverse-transcription polymerase chain reaction for a verification of their symbiosis-induced expression. That way, induction in root nodules and AM was confirmed for 26 genes, most of them being reported as symbiosis-induced for the first time. In addition to delivering a number of novel symbiosis-induced genes, our approach identified several genes that were induced in only one of the two root endosymbioses. The spatial expression patterns of two symbiosis-induced genes encoding an annexin and a beta-tubulin were characterized in transgenic roots using promoter-reporter gene fusions.
Publishing Year
ISSN
PUB-ID

Cite this

Manthey K, Krajinski F, Hohnjec N, et al. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact. 2004;17(10):1063-1077.
Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Pühler, A., Perlick, A. M., & Küster, H. (2004). Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact, 17(10), 1063-1077.
Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Pühler, A., Perlick, A. M., and Küster, H. (2004). Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 17, 1063-1077.
Manthey, K., et al., 2004. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact, 17(10), p 1063-1077.
K. Manthey, et al., “Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses”, Mol Plant-Microbe Interact, vol. 17, 2004, pp. 1063-1077.
Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Pühler, A., Perlick, A.M., Küster, H.: Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact. 17, 1063-1077 (2004).
Manthey, Katja, Krajinski, F, Hohnjec, N, Firnhaber, C, Pühler, Alfred, Perlick, AM, and Küster, Helge. “Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses”. Mol Plant-Microbe Interact 17.10 (2004): 1063-1077.
This data publication is cited in the following publications:
This publication cites the following data publications:

50 Citations in Europe PMC

Data provided by Europe PubMed Central.

Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrere S, Herve C, Debelle F, Gamas P, Bensmihen S, Gough C., New Phytol. 208(1), 2015
PMID: 25919491
An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
Gerlach N, Schmitz J, Polatajko A, Schluter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M., Plant Cell Environ. 38(8), 2015
PMID: 25630535
Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis.
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L., Front Plant Sci 5(), 2014
PMID: 25520732
The role of the cell wall compartment in mutualistic symbioses of plants.
Rich MK, Schorderet M, Reinhardt D., Front Plant Sci 5(), 2014
PMID: 24917869
Strategies utilized by trophically diverse fungal species for Pinus sylvestris root colonization.
Mucha J, Guzicka M, Ratajczak E, Zadworny M., Tree Physiol. 34(1), 2014
PMID: 24391166
Structural and functional characterization of annexin 1 from Medicago truncatula.
Kodavali PK, Skowronek K, Koszela-Piotrowska I, Strzelecka-Kiliszek A, Pawlowski K, Pikula S., Plant Physiol. Biochem. 73(), 2013
PMID: 24056127
Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E., New Phytol. 199(1), 2013
PMID: 23638913
Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses.
Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M, Crabos A, Prodjinoto H, Lahouze B, Bogusz D, Laplaze L, Svistoonoff S., PLoS ONE 7(9), 2012
PMID: 22970303
Metabolomics of forage plants: a review.
Rasmussen S, Parsons AJ, Jones CS., Ann. Bot. 110(6), 2012
PMID: 22351485
Response of living tissues of Pinus sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea.
Sun H, Paulin L, Alatalo E, Asiegbu FO., Tree Physiol. 31(4), 2011
PMID: 21551358
A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation.
Morandi D, le Signor C, Gianinazzi-Pearson V, Duc G., Mycorrhiza 19(6), 2009
PMID: 19347373
Physiological and molecular characterization of aluminum resistance in Medicago truncatula.
Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA., BMC Plant Biol. 8(), 2008
PMID: 18713465
Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-rhizobium etli symbiosis revealed by suppressive subtractive hybridization.
Meschini EP, Blanco FA, Zanetti ME, Beker MP, Kuster H, Puhler A, Aguilar OM., Mol. Plant Microbe Interact. 21(4), 2008
PMID: 18321191
Recent Advances in Medicago truncatula Genomics.
Ane JM, Zhu H, Frugoli J., Int J Plant Genomics 2008(), 2008
PMID: 18288239
Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development.
D'Antuono AL, Ott T, Krusell L, Voroshilova V, Ugalde RA, Udvardi M, Lepek VC., Mol. Plant Microbe Interact. 21(1), 2008
PMID: 18052882
Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.
Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez L, Selim S, Gianinazzi S, Gianinazzi-Pearson V., Mycorrhiza 17(3), 2007
PMID: 17245570

98 References

Data provided by Europe PubMed Central.

Arbuscular mycorrhiza: biological, chemical, and molecular aspects.
Strack D, Fester T, Hause B, Schliemann W, Walter MH., J. Chem. Ecol. 29(9), 2003
PMID: 14584670
PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues.
Stary S, Yin XJ, Potuschak T, Schlogelhofer P, Nizhynska V, Bachmair A., Plant Physiol. 133(3), 2003
PMID: 14551326
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A., J. Biotechnol. 108(2), 2004
PMID: 15129719
Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules.
Catalano CM, Lane WS, Sherrier DJ., Electrophoresis 25(3), 2004
PMID: 14760646
Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes.
Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR., Science 303(5662), 2004
PMID: 14963334
A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses.
Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F., Science 303(5662), 2004
PMID: 14963335
RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula.
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R., J. Exp. Bot. 55(399), 2004
PMID: 15073217
Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins
Wyss, Planta 182(1), 1990
Nucleotide sequence and regulated expression of a wound-inducible potato gene (wun1).
Logemann J, Schell J., Mol. Gen. Genet. 219(1-2), 1989
PMID: 2615766
Ferritin (mRNA, protein) and iron concentrations during soybean nodule development.
Ragland M, Theil EC., Plant Mol. Biol. 21(3), 1993
PMID: 8443348
Tissue-specific gene expression in soybean () detected by cDNA microarray analysis
MAGUIRE, Journal of Plant Physiology 159(12), 2002
Colonisation patterns of root tissues byPhytophthora nicotianae var.parasitica related to reduced disease in mycorrhizal tomato
Cordier, Plant and Soil 185(2), 1996
Effects of arbuscular mycorrhiza (AM) on health ofLinum usitatissimum L. infected by fungal pathogens
Dugassa, Plant and Soil 185(2), 1996
Characterization of Elicitor-inducible Tobacco Genes Isolated by Differential Hybridization
TAKEMOTO, Journal of General Plant Pathology 67(2), 2001
Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling.
Subramanian KS, Charest C, Dwyer LM, Hamilton RI., New Phytol. 129(4), 1995
PMID: IND20552393
Genetic mapping of Rhizobium meliloti.
Meade HM, Signer ER., Proc. Natl. Acad. Sci. U.S.A. 74(5), 1977
PMID: 266730
Differential gene expression in an actinorhizal symbiosis: evidence for a nodule-specific cysteine proteinase.
Goetting-Minesky MP, Mullin BC., Proc. Natl. Acad. Sci. U.S.A. 91(21), 1994
PMID: 7937912
Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field.
Newsham KK, Fitter AH, Watkinson AR., J. Ecol. 83(6), 1995
PMID: IND20557664
Sequence of a near-full length cDNA clone for a mRNA of barley induced by fungal infection.
Jutidamrongphan W, Mackinnon G, Manners JM, Scott KJ., Nucleic Acids Res. 17(22), 1989
PMID: 2587271

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15497399
PubMed | Europe PMC

Search this title in

Google Scholar