Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w])

El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, et al. (2004)
PLANT PHYSIOLOGY 136(2): 3159-3176.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.
Erscheinungsjahr
Zeitschriftentitel
PLANT PHYSIOLOGY
Band
136
Zeitschriftennummer
2
Seite
3159-3176
PUB-ID

Zitieren

El Yahyaoui F, Küster H, Ben Amor B, et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). PLANT PHYSIOLOGY. 2004;136(2):3159-3176.
El Yahyaoui, F., Küster, H., Ben Amor, B., Hohnjec, N., Pühler, A., Becker, A., Gouzy, J., et al. (2004). Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). PLANT PHYSIOLOGY, 136(2), 3159-3176. doi:10.1104/pp.104.013612
El Yahyaoui, F., Küster, H., Ben Amor, B., Hohnjec, N., Pühler, A., Becker, A., Gouzy, J., Vernie, T., Gough, C., Niebel, A., et al. (2004). Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). PLANT PHYSIOLOGY 136, 3159-3176.
El Yahyaoui, F., et al., 2004. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). PLANT PHYSIOLOGY, 136(2), p 3159-3176.
F. El Yahyaoui, et al., “Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w])”, PLANT PHYSIOLOGY, vol. 136, 2004, pp. 3159-3176.
El Yahyaoui, F., Küster, H., Ben Amor, B., Hohnjec, N., Pühler, A., Becker, A., Gouzy, J., Vernie, T., Gough, C., Niebel, A., Godiard, L., Gamas, P.: Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w]). PLANT PHYSIOLOGY. 136, 3159-3176 (2004).
El Yahyaoui, F., Küster, Helge, Ben Amor, B., Hohnjec, N., Pühler, Alfred, Becker, Anke, Gouzy, J., Vernie, T., Gough, C., Niebel, A., Godiard, L., and Gamas, P. “Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program(1[w])”. PLANT PHYSIOLOGY 136.2 (2004): 3159-3176.

102 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Signaling in the arbuscular mycorrhizal symbiosis.
Harrison MJ., Annu Rev Microbiol 59(), 2005
PMID: 16153162

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15466239
PubMed | Europe PMC

Suchen in

Google Scholar