Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti

Puskas LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I (2004)
MOLECULAR GENETICS AND GENOMICS 272(3): 275-289.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
A mutation in the second gene in the ntrPR operon results in increased expression of nodulation (nod) and nitrogen fixation (nif) genes in Sinorhizobium meliloti. Since this pleiotropic effect is particularly pronounced in the presence of external combined nitrogen, a nitrogen regulatory function has been suggested for NtrR. To identify the complete set of protein-coding genes influenced by loss of ntrR function, microarray hybridizations were carried out to compare transcript levels in the wild type and mutant strains grown under aerobic and microaerobic conditions. Of the 6207 genes examined, representing the entire genome of S. meliloti, 7% exhibited altered expression: 4.5% of the genes are affected under oxic, 2.5% under microoxic conditions. 0.4% of all the genes are affected under both oxygen concentrations. A microoxic environment is required for the induction of genes related to symbiotic functions but results in the down-regulation of other (e.g. metabolic) functions. When the alterations in transcription levels at low oxygen concentration in the mutant strain were compared to those of the wild type, a modulating effect of the ntrR mutation was observed. For example, symbiotic nif/fix genes were induced in both strains, but the level of induction was higher in the ntrR mutant. In contrast, genes related to transcription/translation functions were down-regulated in both strains, and the effect was greater in the wild-type strain than in the ntrR mutant. A relatively wide range of functions was affected by this modulating influence, suggesting that ntrR is not a nitrogen regulatory gene. Since genes encoding various unrelated functions were affected, we propose that NtrR may either interfere with general regulatory mechanisms, such as phosphorylation/dephosphorylation, or may influence RNA stability.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Puskas LG, Nagy ZB, Kelemen JZ, et al. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS. 2004;272(3):275-289.
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, S., Bodogai, M., Becker, A., & Dusha, I. (2004). Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS, 272(3), 275-289.
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, S., Bodogai, M., Becker, A., and Dusha, I. (2004). Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS 272, 275-289.
Puskas, L.G., et al., 2004. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS, 272(3), p 275-289.
L.G. Puskas, et al., “Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti”, MOLECULAR GENETICS AND GENOMICS, vol. 272, 2004, pp. 275-289.
Puskas, L.G., Nagy, Z.B., Kelemen, J.Z., Rüberg, S., Bodogai, M., Becker, A., Dusha, I.: Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. MOLECULAR GENETICS AND GENOMICS. 272, 275-289 (2004).
Puskas, L. G., Nagy, Z. B., Kelemen, J. Z., Rüberg, Silvia, Bodogai, M., Becker, Anke, and Dusha, I. “Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti”. MOLECULAR GENETICS AND GENOMICS 272.3 (2004): 275-289.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.
Paco A, Brigido C, Alexandre A, Mateos PF, Oliveira S., PLoS ONE 11(2), 2016
PMID: 26845770
A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa.
Lipuma J, Cinege G, Bodogai M, Olah B, Kiers A, Endre G, Dupont L, Dusha I., Environ. Microbiol. 16(12), 2014
PMID: 25156344
Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti.
Milunovic B, diCenzo GC, Morton RA, Finan TM., J. Bacteriol. 196(4), 2014
PMID: 24317400
Ribonucleases in bacterial toxin-antitoxin systems.
Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R, Fineran PC, Arcus VL., Biochim. Biophys. Acta 1829(6-7), 2013
PMID: 23454553
A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants.
Brigido C, Robledo M, Menendez E, Mateos PF, Oliveira S., Mol. Plant Microbe Interact. 25(12), 2012
PMID: 23134119
The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array.
Arcus VL, McKenzie JL, Robson J, Cook GM., Protein Eng. Des. Sel. 24(1-2), 2011
PMID: 21036780
Signals of growth regulation in bacteria.
Hayes CS, Low DA., Curr. Opin. Microbiol. 12(6), 2009
PMID: 19854099
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G., Mol. Plant Microbe Interact. 20(10), 2007
PMID: 17918631
The ntrPR operon of Sinorhizobium meliloti is organized and functions as a toxin-antitoxin module.
Bodogai M, Ferenczi S, Bashtovyy D, Miclea P, Papp P, Dusha I., Mol. Plant Microbe Interact. 19(7), 2006
PMID: 16838793
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Capela D, Filipe C, Bobik C, Batut J, Bruand C., Mol. Plant Microbe Interact. 19(4), 2006
PMID: 16610739
The proteasome inhibitor MG132 protects against acute pancreatitis.
Letoha T, Somlai C, Takacs T, Szabolcs A, Rakonczay Z Jr, Jarmay K, Szalontai T, Varga I, Kaszaki J, Boros I, Duda E, Hackler L, Kurucz I, Penke B., Free Radic. Biol. Med. 39(9), 2005
PMID: 16214030
Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth.
Rodriguez-Quinones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA., Arch. Microbiol. 183(4), 2005
PMID: 15830189

54 References

Data provided by Europe PubMed Central.


Spaink, Annu Rev Microbiol 54(), 2000
The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein.
Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulys D, Hoch JA., EMBO J. 8(5), 1989
PMID: 2504584
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP., Nucleic Acids Res. 30(4), 2002
PMID: 11842121
Luteolin and GroESL modulate in vitro activity of NodD.
Yeh KC, Peck MC, Long SR., J. Bacteriol. 184(2), 2002
PMID: 11751831

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15365818
PubMed | Europe PMC

Search this title in

Google Scholar