Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor

Fraysse N, Lindner B, Kaczynski Z, Sharypova L, Holst O, Niehaus K, Poinsot V (2005)
Glycobiology 15(1): 101-108.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Sinorhizobium meliloti strain 1021 possesses the particularity to synthesize biologically inefficient capsular polysaccharides (KPS). It has been assumed that this class of compounds is not produced in high-molecular-mass (HMM) forms, even if many genetic analyses show the existence of expression of genes involved in the biosynthesis of capsular polysaccharides. The expression of these genes that are involved in the export of a KPS throughout the membrane and in the attachment of a lipid moiety has never been related to a structurally characterized surface polysaccharide. It is now reported that S. meliloti strain 1021 produces low-molecular-mass polysaccharides (4-4.5 kDa) that are exclusively composed of beta-(2-->7)-linked 3-deoxy-d-manno-oct-2-ulopyranosonic acid (Kdo) residues. These compounds are considered precursor molecules of HMM KPS, whose biosynthesis is arrested in the case of S. meliloti strain 1021. For the first time, the phospholipid anchor of a rhizobial KPS has been found, and its structure could be partially identified-namely, a phosphoglycerol moiety bearing a hydroxy-octacosanoic acid. When compared to other rhizobial KPS (composed of dimeric hexose-Kdo-like sugar repeating units), the Kdo homopolymer described here may explain why a complementation of S. meliloti strain 1021 Exo B mutant with an effective rkpZ gene restoring an active higher KPS size does not completely lead to the fully effective nitrogen fixing phenotype.
Erscheinungsjahr
Zeitschriftentitel
Glycobiology
Band
15
Zeitschriftennummer
1
Seite
101-108
ISSN
eISSN
PUB-ID

Zitieren

Fraysse N, Lindner B, Kaczynski Z, et al. Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology. 2005;15(1):101-108.
Fraysse, N., Lindner, B., Kaczynski, Z., Sharypova, L., Holst, O., Niehaus, K., & Poinsot, V. (2005). Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology, 15(1), 101-108. doi:10.1093/glycob/cwh142
Fraysse, N., Lindner, B., Kaczynski, Z., Sharypova, L., Holst, O., Niehaus, K., and Poinsot, V. (2005). Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology 15, 101-108.
Fraysse, N., et al., 2005. Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology, 15(1), p 101-108.
N. Fraysse, et al., “Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor”, Glycobiology, vol. 15, 2005, pp. 101-108.
Fraysse, N., Lindner, B., Kaczynski, Z., Sharypova, L., Holst, O., Niehaus, K., Poinsot, V.: Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. Glycobiology. 15, 101-108 (2005).
Fraysse, N., Lindner, B., Kaczynski, Z., Sharypova, L., Holst, O., Niehaus, Karsten, and Poinsot, V. “Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor”. Glycobiology 15.1 (2005): 101-108.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gold(I)-catalyzed synthesis of β-Kdo glycosides using Kdo ortho-hexynylbenzoate as donor.
Mi X, Lou Q, Fan W, Zhuang L, Yang Y., Carbohydr Res 448(), 2017
PMID: 28478910
Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides.
Arnold MFF, Shabab M, Penterman J, Boehme KL, Griffitts JS, Walker GC., MBio 8(4), 2017
PMID: 28765224
Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.
Crespo-Rivas JC, Guefrachi I, Mok KC, Villaécija-Aguilar JA, Acosta-Jurado S, Pierre O, Ruiz-Sainz JE, Taga ME, Mergaert P, Vinardell JM., Environ Microbiol 18(8), 2016
PMID: 26521863
Progress in Kdo-glycoside chemistry.
Kosma P., Tetrahedron Lett 57(20), 2016
PMID: 27274586
Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM., Int J Mol Sci 17(5), 2016
PMID: 27213334
Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99).
Ovchinnikova OG, Mallette E, Koizumi A, Lowary TL, Kimber MS, Whitfield C., Proc Natl Acad Sci U S A 113(22), 2016
PMID: 27199480
Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens.
Willis LM, Stupak J, Richards MR, Lowary TL, Li J, Whitfield C., Proc Natl Acad Sci U S A 110(19), 2013
PMID: 23610430
Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume.
Margaret-Oliver I, Lei W, Parada M, Rodríguez-Carvajal MA, Crespo-Rivas JC, Hidalgo Á, Gil-Serrano A, Moreno J, Rodríguez-Navarro DN, Buendía-Clavería A, Ollero J, Ruiz-Sainz JE, Vinardell JM., Arch Microbiol 194(2), 2012
PMID: 21761170
Sinorhizobium fredii HH103 rkp-3 genes are required for K-antigen polysaccharide biosynthesis, affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules.
Margaret I, Crespo-Rivas JC, Acosta-Jurado S, Buendía-Clavería AM, Cubo MT, Gil-Serrano A, Moreno J, Murdoch PS, Rodríguez-Carvajal MA, Rodríguez-Navarro DN, Ruiz-Sainz JE, Sanjuán J, Soto MJ, Vinardell JM., Mol Plant Microbe Interact 25(6), 2012
PMID: 22397406
Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti.
Slaveykova VI, Parthasarathy N, Dedieu K, Toescher D., Environ Pollut 158(8), 2010
PMID: 20541857
The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea.
Hidalgo A, Margaret I, Crespo-Rivas JC, Parada M, Murdoch Pdel S, López A, Buendía-Clavería AM, Moreno J, Albareda M, Gil-Serrano AM, Rodríguez-Carvajal MA, Palacios JM, Ruiz-Sainz JE, Vinardell JM., Microbiology 156(pt 11), 2010
PMID: 20688828
An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent.
Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL., Carbohydr Res 344(15), 2009
PMID: 19679303
Molecular structure of endotoxins from Gram-negative marine bacteria: an update.
Leone S, Silipo A, L Nazarenko E, Lanzetta R, Parrilli M, Molinaro A., Mar Drugs 5(3), 2007
PMID: 18463721
Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan.
Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM, Rodríguez-Carvajal MA, Moreno J, Ruiz-Sainz JE., Mol Plant Microbe Interact 19(1), 2006
PMID: 16404952

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15355932
PubMed | Europe PMC

Suchen in

Google Scholar