Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum

Gross A, Kapp D, Nielsen T, Niehaus K (2005)
New Phytologist 165(1): 215-226.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
The specific recognition of phytopathogenic bacteria by plant cells is generally mediated by a number of signal molecules. The elicitor-active lipopolysaccharides (LPS) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X.c.c) are recognized by its non-host plant Nicotiana tabacum (N.t.). This LPS was purified and labelled with fluorescein isothiocyanate (FITC) for monitoring the fate of these signal molecules in intact plant cells of tobacco. In this study we were able to show that the so-labelled LPS rapidly bound to the cell wall and was then internalized into the cells in a temperature- and energy-dependent way. This uptake of LPS could be outcompeted by the addition of an excess of unlabelled LPS. Furthermore, it was blocked by amantadine, an inhibitor of receptor-mediated endocytosis of mammalian cells. Immunolocalization experiments showed for the first time a significant co-localization of the LPS-elicitor with endosomal structures using an anti-Ara6 antibody. These observations suggest specific endocytosis of LPSX.c.c. into tobacco cells. The possibility for a receptor-mediated endocytosis comparable to the mammalian system will be discussed.
Publishing Year
ISSN
PUB-ID

Cite this

Gross A, Kapp D, Nielsen T, Niehaus K. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist. 2005;165(1):215-226.
Gross, A., Kapp, D., Nielsen, T., & Niehaus, K. (2005). Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist, 165(1), 215-226.
Gross, A., Kapp, D., Nielsen, T., and Niehaus, K. (2005). Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist 165, 215-226.
Gross, A., et al., 2005. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist, 165(1), p 215-226.
A. Gross, et al., “Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum”, New Phytologist, vol. 165, 2005, pp. 215-226.
Gross, A., Kapp, D., Nielsen, T., Niehaus, K.: Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytologist. 165, 215-226 (2005).
Gross, A., Kapp, D., Nielsen, T., and Niehaus, Karsten. “Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum”. New Phytologist 165.1 (2005): 215-226.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

MAMP (microbe-associated molecular pattern) triggered immunity in plants.
Newman MA, Sundelin T, Nielsen JT, Erbs G., Front Plant Sci 4(), 2013
PMID: 23720666
Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors.
Saubeau G, Goulitquer S, Barloy D, Potin P, Andrivon D, Val F., Plant Cell Rep. 32(5), 2013
PMID: 23479199
Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana.
Zeidler D, Dubery IA, Schmitt-Kopplin P, Von Rad U, Durner J., Mol. Plant Pathol. 11(6), 2010
PMID: 21029320
Endocytosis in plant-microbe interactions.
Leborgne-Castel N, Adam T, Bouhidel K., Protoplasma 247(3-4), 2010
PMID: 20814704
Bacterial DNA activates immunity in Arabidopsis thaliana
Yakushiji S, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y., J. Gen. Plant Pathol. 75(3), 2009
PMID: IND44212195
Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses.
Aslam SN, Erbs G, Morrissey KL, Newman MA, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM., Mol. Plant Pathol. 10(3), 2009
PMID: 19400840
Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine.
Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S., Plant Cell Environ. 32(2), 2009
PMID: 19021887
The functions of Rab GTPases in plant membrane traffic.
Woollard AA, Moore I., Curr. Opin. Plant Biol. 11(6), 2008
PMID: 18952493
Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity.
Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman MA, Cooper RM., Chem. Biol. 15(5), 2008
PMID: 18482696
Transport and secretion in plant-microbe interactions.
Huckelhoven R., Curr. Opin. Plant Biol. 10(6), 2007
PMID: 17875397
Pattern recognition receptors: from the cell surface to intracellular dynamics.
Altenbach D, Robatzek S., Mol. Plant Microbe Interact. 20(9), 2007
PMID: 17849705
Vesicle trafficking in plant immune responses.
Robatzek S., Cell. Microbiol. 9(1), 2007
PMID: 17081192
Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance.
Sanabria NM, Dubery IA., Biochem. Biophys. Res. Commun. 344(3), 2006
PMID: 16643858
The endocytic network in plants.
Samaj J, Read ND, Volkmann D, Menzel D, Baluska F., Trends Cell Biol. 15(8), 2005
PMID: 16006126

68 References

Data provided by Europe PubMed Central.

Dynamic continuity of cytoplasmic and membrane compartments between plant cells.
Baron-Epel O, Hernandez D, Jiang LW, Meiners S, Schindler M., J. Cell Biol. 106(3), 1988
PMID: 3346323
Visualization of elicitor-binding loci at the plant cell surface
Diekmann, Planta 195(1), 1994
A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures
Murashige, Physiologia Plantarum 15(3), 1962
Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes.
Nurnberger T, Nennstiel D, Hahlbrock K, Scheel D., Proc. Natl. Acad. Sci. U.S.A. 92(6), 1995
PMID: 7892267
Structure and function of lipopolysaccharide binding protein.
Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ., Science 249(4975), 1990
PMID: 2402637
Extracellular polysaccharides from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during pathogenesis.
Boher B, Nicole M, Potin M, Geiger JP., Mol. Plant Microbe Interact. 10(7), 1997
PMID: 9304855
Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp. atroseptica.
Toth IK, Thorpe CJ, Bentley SD, Mulholland V, Hyman LJ, Perombelon MC, Salmond GP., Mol. Plant Microbe Interact. 12(6), 1999
PMID: 10356801
Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins.
Cook BJ, Clay RP, Bergmann CW, Albersheim P, Darvill AG., Mol. Plant Microbe Interact. 12(8), 1999
PMID: 10432636
3,3',5,5'-Tetramethylbenzidine as an Ames Test Negative Chromogen for Horse-Radish Peroxidase in Enzyme-Immunoassay
Bos, Journal of Immunoassay and Immunochemistry 2(3), 1981
Endotoxin interactions with lipopolysaccharide-responsive cells.
Tobias PS, Tapping RI, Gegner JA., Clin. Infect. Dis. 28(3), 1999
PMID: 10194064

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15720635
PubMed | Europe PMC

Search this title in

Google Scholar