Design of molecular photonic wires based on multistep electronic excitation transfer

Tinnefeld P, Heilemann M, Sauer M (2005)
CHEMPHYSCHEM 6(2): 217-222.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Light-harvesting complexes, one of nature's supreme examples of nonoscole engineering, have inspired researchers to construct optical devices, such as photonic wires, which ore optimised for efficient transfer of excited-state energy over large distances. The control parameters for the design and the advantages of single-molecule fluorescence spectroscopy for the study of such complex systems are discussed with respect to energy-transfer mechanisms, chromophore selection and arrangement as well as static and dynamic heterogeneity.
Publishing Year

Cite this

Tinnefeld P, Heilemann M, Sauer M. Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM. 2005;6(2):217-222.
Tinnefeld, P., Heilemann, M., & Sauer, M. (2005). Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM, 6(2), 217-222. doi:10.1002/cphc.200400513
Tinnefeld, P., Heilemann, M., and Sauer, M. (2005). Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM 6, 217-222.
Tinnefeld, P., Heilemann, M., & Sauer, M., 2005. Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM, 6(2), p 217-222.
P. Tinnefeld, M. Heilemann, and M. Sauer, “Design of molecular photonic wires based on multistep electronic excitation transfer”, CHEMPHYSCHEM, vol. 6, 2005, pp. 217-222.
Tinnefeld, P., Heilemann, M., Sauer, M.: Design of molecular photonic wires based on multistep electronic excitation transfer. CHEMPHYSCHEM. 6, 217-222 (2005).
Tinnefeld, P, Heilemann, Mike, and Sauer, Markus. “Design of molecular photonic wires based on multistep electronic excitation transfer”. CHEMPHYSCHEM 6.2 (2005): 217-222.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

Multichromophoric π-Conjugation: Modular Design for Gated and Cascade Energy Transfer.
Park BG, Hong DH, Lee HY, Lee M, Lee D., Chemistry 22(19), 2016
PMID: 27011263
A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell.
Si J, Liang D, Kong D, Wu S, Yuan L, Xiang Y, Jiang L., Carbohydr Polym 117(), 2015
PMID: 25498627
Excitonic AND Logic Gates on DNA Brick Nanobreadboards.
Cannon BL, Kellis DL, Davis PH, Lee J, Kuang W, Hughes WL, Graugnard E, Yurke B, Knowlton WB., ACS Photonics 2(3), 2015
PMID: 25839049
Structure-based model for light-harvesting properties of nucleic acid nanostructures.
Pan K, Boulais E, Yang L, Bathe M., Nucleic Acids Res. 42(4), 2014
PMID: 24311563
Asymmetric dinuclear bis(dipyrrinato)zinc(II) complexes: broad absorption and unidirectional quantitative exciton transmission.
Tsuchiya M, Sakamoto R, Kusaka S, Kitagawa Y, Okumura M, Nishihara H., Chem. Commun. (Camb.) 50(44), 2014
PMID: 24756540
Extending FRET cascades on linear DNA photonic wires.
Spillmann CM, Buckhout-White S, Oh E, Goldman ER, Ancona MG, Medintz IL., Chem. Commun. (Camb.) 50(55), 2014
PMID: 24752334
DNA-multichromophore systems.
Teo YN, Kool ET., Chem. Rev. 112(7), 2012
PMID: 22424059
Preparation of supramolecular chromophoric assemblies using a DNA duplex.
Kashida H, Asanuma H., Phys Chem Chem Phys 14(20), 2012
PMID: 22532160
Advances in quantitative FRET-based methods for studying nucleic acids.
Preus S, Wilhelmsson LM., Chembiochem 13(14), 2012
PMID: 22936620
Photon cascade with clip-on fluorophores.
Friedrich F, Heckel A., Chemphyschem 12(11), 2011
PMID: 21567707
Self-assembled DNA-based fluorescence waveguide with selectable output.
Hannestad JK, Gerrard SR, Brown T, Albinsson B., Small 7(22), 2011
PMID: 21901828
Challenges and opportunities for structural DNA nanotechnology.
Pinheiro AV, Han D, Shih WM, Yan H., Nat Nanotechnol 6(12), 2011
PMID: 22056726
Macromolecular multi-chromophoric scaffolding.
Schwartz E, Le Gac S, Cornelissen JJ, Nolte RJ, Rowan AE., Chem Soc Rev 39(5), 2010
PMID: 20419211
Binaphthyl-DNA: stacking and fluorescence of a nonplanar aromatic base surrogate in DNA.
Hainke S, Seitz O., Angew. Chem. Int. Ed. Engl. 48(44), 2009
PMID: 19790219
Single-molecule photophysics of oxazines on DNA and its application in a FRET switch.
Vogelsang J, Cordes T, Tinnefeld P., Photochem. Photobiol. Sci. 8(4), 2009
PMID: 19337662
Polyfluorophore excimers and exciplexes as FRET donors in DNA.
Teo YN, Kool ET., Bioconjug. Chem. 20(12), 2009
PMID: 19916519
Single-molecule studies of a model fluorenone.
Odoi MY, Hammer NI, Rathnayake HP, Lahti PM, Barnes MD., Chemphyschem 8(10), 2007
PMID: 17533617
Nonmonotonic energy harvesting efficiency in biased exciton chains.
Vlaming SM, Malyshev VA, Knoester J., J Chem Phys 127(15), 2007
PMID: 17949203
Energy transfer in single-molecule photonic wires.
Garcia-Parajo MF, Hernando J, Sanchez Mosteiro G, Hoogenboom JP, van Dijk EM, van Hulst NF., Chemphyschem 6(5), 2005
PMID: 15884064

40 References

Data provided by Europe PubMed Central.

Vosch, The Journal of Physical Chemistry A 107(36), 2003
Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules.
Hofkens J, Cotlet M, Vosch T, Tinnefeld P, Weston KD, Ego C, Grimsdale A, Mullen K, Beljonne D, Bredas JL, Jordens S, Schweitzer G, Sauer M, De Schryver F., Proc. Natl. Acad. Sci. U.S.A. 100(23), 2003
PMID: 14583594
Design of multidye systems for FRET-based applications.
Shchepinov MS, Korshun VA., Nucleosides Nucleotides Nucleic Acids 20(4-7), 2001
PMID: 11563049
Multistep energy transfer in single molecular photonic wires.
Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M., J. Am. Chem. Soc. 126(21), 2004
PMID: 15161254

Vyawahare, Nano Letters 4(6), 2004
Investigation of perylene photonic wires by combined single-molecule fluorescence and atomic force microscopy.
Hernando J, de Witte PA, van Dijk EM, Korterik J, Nolte RJ, Rowan AE, Garcia-Parajo MF, van Hulst NF., Angew. Chem. Int. Ed. Engl. 43(31), 2004
PMID: 15300691
Investigation of Perylene Photonic Wires by Combined Single-Molecule Fluorescence and Atomic Force Microscopy
Hernando, Angewandte Chemie 116(31), 2004
Physical chemistry: quantum mechanics for plants.
Fleming GR, Scholes GD., Nature 431(7006), 2004
PMID: 15372016
Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy.
Tinnefeld P, Hofkens J, Herten DP, Masuo S, Vosch T, Cotlet M, Habuchi S, Mullen K, De Schryver FC, Sauer M., Chemphyschem 5(11), 2004
PMID: 15580942

Wagner, Journal of the American Chemical Society 116(21), 1994
Sorting single molecules: application to diagnostics and evolutionary biotechnology.
Eigen M, Rigler R., Proc. Natl. Acad. Sci. U.S.A. 91(13), 1994
PMID: 7517036
Entropic elasticity of lambda-phage DNA.
Bustamante C, Marko JF, Siggia ED, Smith S., Science 265(5178), 1994
PMID: 8079175
Zwischenmolekulare Energiewanderung und Fluoreszenz
Förster, Annalen der Physik 437(1-2), 1948
How Nature Harvests Sunlight
Hu, Physics Today 50(8), 1997


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 15751339
PubMed | Europe PMC

Search this title in

Google Scholar