Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques

Silberbach M, Schafer M, Hüser AT, Kalinowski J, Pühler A, Kramer R, Burkovski A (2005)
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71(5): 2391-2402.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
The response of Corynebacterium glutamicum to ammonium limitation was studied by transcriptional and proteome profiling of cells grown in a chemostat. Our results show that ammonium-limited growth of C. glutamicum results in a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation, amino acid biosynthesis, and carbon metabolism, as well as a decreased cell division. Since transcription at different growth rates was studied, it was possible to distinguish specific responses to ammonium limitation and more general, growth rate-dependent alterations in gene expression. The latter include a number of genes encoding ribosomal proteins and genes for F0F1-ATP synthase subunits.
Publishing Year
ISSN
PUB-ID

Cite this

Silberbach M, Schafer M, Hüser AT, et al. Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2005;71(5):2391-2402.
Silberbach, M., Schafer, M., Hüser, A. T., Kalinowski, J., Pühler, A., Kramer, R., & Burkovski, A. (2005). Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(5), 2391-2402.
Silberbach, M., Schafer, M., Hüser, A. T., Kalinowski, J., Pühler, A., Kramer, R., and Burkovski, A. (2005). Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71, 2391-2402.
Silberbach, M., et al., 2005. Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(5), p 2391-2402.
M. Silberbach, et al., “Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 71, 2005, pp. 2391-2402.
Silberbach, M., Schafer, M., Hüser, A.T., Kalinowski, J., Pühler, A., Kramer, R., Burkovski, A.: Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 71, 2391-2402 (2005).
Silberbach, M., Schafer, M., Hüser, Andrea T., Kalinowski, Jörn, Pühler, Alfred, Kramer, R., and Burkovski, A. “Adaptation of Corynebacterium glutamicum to ammonium limitation: A global analysis using transcriptome and proteome techniques”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71.5 (2005): 2391-2402.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

High-throughput screening of a Corynebacterium glutamicum mutant library on genomic and metabolic level.
Reimer LC, Spura J, Schmidt-Hohagen K, Schomburg D., PLoS ONE 9(2), 2014
PMID: 24504095
Nitrogen starvation-induced transcriptome alterations and influence of transcription regulator mutants in Mycobacterium smegmatis.
Jeßberger N, Lu Y, Amon J, Titgemeyer F, Sonnewald S, Reid S, Burkovski A., BMC Res Notes 6(), 2013
PMID: 24266988
Recent advances in the study of enzyme promiscuity in the tautomerase superfamily.
Baas BJ, Zandvoort E, Geertsema EM, Poelarends GJ., Chembiochem 14(8), 2013
PMID: 23649962
Proteomics of corynebacteria: From biotechnology workhorses to pathogens.
Poetsch A, Haussmann U, Burkovski A., Proteomics 11(15), 2011
PMID: 21674800
Expression and β-glucan binding properties of Scots pine (Pinus sylvestris L.) antimicrobial protein (Sp-AMP).
Sooriyaarachchi S, Jaber E, Covarrubias AS, Ubhayasekera W, Asiegbu FO, Mowbray SL., Plant Mol. Biol. 77(1-2), 2011
PMID: 21584858
Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community.
Mueller RS, Dill BD, Pan C, Belnap CP, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF., Environ. Microbiol. 13(8), 2011
PMID: 21518216
L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing.
Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M., Microbiology (Reading, Engl.) 156(Pt 10), 2010
PMID: 20656783
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rogner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR.
Muhl D, Jessberger N, Hasselt K, Jardin C, Sticht H, Burkovski A., BMC Mol. Biol. 10(), 2009
PMID: 19627583
Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability
Geisseler Daniel, Horwath WilliamR, Doane TimothyA., Soil Biol. Biochem. 41(6), 2009
PMID: IND44207574
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A., Microbiology (Reading, Engl.) 155(Pt 4), 2009
PMID: 19332837
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes.
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martin JF., BMC Microbiol. 8(), 2008
PMID: 19091079
A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH.
Ludke A, Kramer R, Burkovski A, Schluesener D, Poetsch A., BMC Microbiol. 7(), 2007
PMID: 17254330
Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761.
Gunther NW 4th, Nunez A, Fortis L, Solaiman DK., J. Ind. Microbiol. Biotechnol. 33(11), 2006
PMID: 16964509
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Buchs J., Appl. Microbiol. Biotechnol. 72(6), 2006
PMID: 16642330
Global transcriptional analysis of Methanosarcina mazei strain Go1 under different nitrogen availabilities.
Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP, Deppenmeier U, Schmitz RA., Mol. Genet. Genomics 276(1), 2006
PMID: 16625354
Emerging Corynebacterium glutamicum systems biology.
Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W., J. Biotechnol. 124(1), 2006
PMID: 16406159
Manipulating corynebacteria, from individual genes to chromosomes.
Vertes AA, Inui M, Yukawa H., Appl. Environ. Microbiol. 71(12), 2005
PMID: 16332735

36 References

Data provided by Europe PubMed Central.

Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD.
Nolden L, Ngouoto-Nkili CE, Bendt AK, Kramer R, Burkovski A., Mol. Microbiol. 42(5), 2001
PMID: 11886559

AUTHOR UNKNOWN, 1989

AUTHOR UNKNOWN, 1973
Response to nitrogen starvation in Corynebacterium glutamicum.
Schmi R, Uhlemann EM, Nolden L, Wersch G, Hecker R, Hermann T, Marx A, Burkovski A., FEMS Microbiol. Lett. 187(1), 2000
PMID: 10828405
A functionally split pathway for lysine synthesis in Corynebacterium glutamicium.
Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H., J. Bacteriol. 173(14), 1991
PMID: 1906065

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 1960
Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis.
Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y., Nucleic Acids Res. 29(3), 2001
PMID: 11160890
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121068

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15870326
PubMed | Europe PMC

Search this title in

Google Scholar