Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells

Braun SG, Meyer A, Olst O, Pühler A, Niehaus K (2005)
Molecular Plant - Microbe Interactions 18(7): 674-681.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
The lipopolysaccharides (LPS) of gram-negative bacteria are essential for perception of pathogens by animals and plants. To identify the LPS substructure or substructures recognized by plants, we isolated water-phase (w)LPS from different Xanthomonas campestris pv. campestris mutants and analyzed their sugar content and ability to elicit an oxidative burst in tobacco cell cultures. The different wLPS species are characterized by lacking repetitive subunits of the O-antigen, the complete O-antigen, or even most of the core region. Because loss of lipid A would be lethal to bacteria, pure lipid A was obtained from X. campestris pv. campestris wild-type wLPS by chemical hydrolysis. The elicitation experiments with tobacco cell cultures revealed that LPS detection is dependent on the bioavailability of the amphiphilic wLPS, which can form micelles in an aqueous environment. By adding deoxycholate to prevent micelle formation, all of the tested wLPS species showed elicitation capability, whereas the lipid A alone was not able to trigger an oxidative burst or calcium transients in tobacco cell cultures. These results suggest that the LPS substructure recognized by tobacco cells is localized in the inner core region of the LPS, consisting of glucose, gallacturonic acid, and 3-deoxy-d-manno-oct-2-ulosonic acids. Although lipid A alone seems to be insufficient to induce an oxidative burst in tobacco cell cultures, it cannot be ruled out that lipid A or the glucosamine backbone may be important in combination with the inner core structures.
Publishing Year
ISSN
PUB-ID

Cite this

Braun SG, Meyer A, Olst O, Pühler A, Niehaus K. Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions. 2005;18(7):674-681.
Braun, S. G., Meyer, A., Olst, O., Pühler, A., & Niehaus, K. (2005). Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions, 18(7), 674-681.
Braun, S. G., Meyer, A., Olst, O., Pühler, A., and Niehaus, K. (2005). Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions 18, 674-681.
Braun, S.G., et al., 2005. Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions, 18(7), p 674-681.
S.G. Braun, et al., “Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells”, Molecular Plant - Microbe Interactions, vol. 18, 2005, pp. 674-681.
Braun, S.G., Meyer, A., Olst, O., Pühler, A., Niehaus, K.: Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant - Microbe Interactions. 18, 674-681 (2005).
Braun, S. G., Meyer, A., Olst, O., Pühler, Alfred, and Niehaus, Karsten. “Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells”. Molecular Plant - Microbe Interactions 18.7 (2005): 674-681.
This data publication is cited in the following publications:
This publication cites the following data publications:

11 Citations in Europe PMC

Data provided by Europe PubMed Central.

Chemistry of lipid A: at the heart of innate immunity.
Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jimenez-Barbero J, Silipo A, Martin-Santamaria S., Chemistry 21(2), 2015
PMID: 25353096
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach.
Musa YR, Basell K, Schatschneider S, Vorholter FJ, Becher D, Niehaus K., J. Biotechnol. 167(2), 2013
PMID: 23792782
MAMP (microbe-associated molecular pattern) triggered immunity in plants.
Newman MA, Sundelin T, Nielsen JT, Erbs G., Front Plant Sci 4(), 2013
PMID: 23720666
Structural analysis and involvement in plant innate immunity of Xanthomonas axonopodis pv. citri lipopolysaccharide.
Casabuono A, Petrocelli S, Ottado J, Orellano EG, Couto AS., J. Biol. Chem. 286(29), 2011
PMID: 21596742
Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.
Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA., Environ. Microbiol. 12(8), 2010
PMID: 21966916
Influence of Campylobacter fetus subsp. fetus on ram sperm cell quality.
Zan Bar T, Yehuda R, Hacham T, Krupnik S, Bartoov B., J. Med. Microbiol. 57(Pt 11), 2008
PMID: 18927420
The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.
Lee SW, Jeong KS, Han SW, Lee SE, Phee BK, Hahn TR, Ronald P., J. Bacteriol. 190(6), 2008
PMID: 18203830

33 References

Data provided by Europe PubMed Central.

Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels.
Kittelberger R, Hilbink F., J. Biochem. Biophys. Methods 26(1), 1993
PMID: 8387076
Receptor-like protein kinases: the keys to response.
Morris ER, Walker JC., Curr. Opin. Plant Biol. 6(4), 2003
PMID: 12873528
Pattern recognition molecules and innate immunity to parasites.
McGuinness DH, Dehal PK, Pleass RJ., Trends Parasitol. 19(7), 2003
PMID: 12855382
Elicitation of plants and microbial cell systems.
Radman R, Saez T, Bucke C, Keshavarz T., Biotechnol. Appl. Biochem. 37(Pt 1), 2003
PMID: 12578556

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16042013
PubMed | Europe PMC

Search this title in

Google Scholar