Identification of plant glutaredoxin targets

Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz K-J, Jacquot JP, Wingsle G (2005)

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ; ; ;
Glutaredoxins (Grxs) are small ubiquitous proteins of the thioredoxin (Trx) family, which catalyze dithiol-disulfide exchange reactions or reduce protein-mixed glutathione disulfides. In plants, several Trx-interacting proteins have been isolated from different compartments, whereas very few Grx-interacting proteins are known. We describe here the determination of Grx target proteins using a mutated poplar Grx, various tissular and subcellular plant extracts, and liquid chromatography coupled to tandem mass spectrometry detection. We have identified 94 putative targets, involved in many processes, including oxidative stress response [peroxiredoxins (Prxs), ascorbate peroxidase, catalase], nitrogen, sulfur, and carbon metabolisms (methionine synthase, alanine aminotransferase, phosphoglycerate kinase), translation (elongation factors E and To), or protein folding (heat shock protein 70). Some of these proteins were previously found to interact with Trx or to be glutathiolated in other organisms, but others could be more specific partners of Grx. To substantiate further these data, Grx was shown to support catalysis of the stroma beta-type carbonic anhydrase and Prx IIF of Arabidopsis thaliana, but not of poplar 2-Cys Prx. Overall, these data suggest that the interaction could occur randomly either with exposed cysteinyl disulfide bonds formed within or between target proteins or with mixed disulfides between a protein thiol and glutathione.
Publishing Year

Cite this

Rouhier N, Villarejo A, Srivastava M, et al. Identification of plant glutaredoxin targets. ANTIOXIDANTS & REDOX SIGNALING. 2005;7(7-8):919-929.
Rouhier, N., Villarejo, A., Srivastava, M., Gelhaye, E., Keech, O., Droux, M., Finkemeier, I., et al. (2005). Identification of plant glutaredoxin targets. ANTIOXIDANTS & REDOX SIGNALING, 7(7-8), 919-929. doi:10.1089/ars.2005.7.919
Rouhier, N., Villarejo, A., Srivastava, M., Gelhaye, E., Keech, O., Droux, M., Finkemeier, I., Samuelsson, G., Dietz, K. - J., Jacquot, J. P., et al. (2005). Identification of plant glutaredoxin targets. ANTIOXIDANTS & REDOX SIGNALING 7, 919-929.
Rouhier, N., et al., 2005. Identification of plant glutaredoxin targets. ANTIOXIDANTS & REDOX SIGNALING, 7(7-8), p 919-929.
N. Rouhier, et al., “Identification of plant glutaredoxin targets”, ANTIOXIDANTS & REDOX SIGNALING, vol. 7, 2005, pp. 919-929.
Rouhier, N., Villarejo, A., Srivastava, M., Gelhaye, E., Keech, O., Droux, M., Finkemeier, I., Samuelsson, G., Dietz, K.-J., Jacquot, J.P., Wingsle, G.: Identification of plant glutaredoxin targets. ANTIOXIDANTS & REDOX SIGNALING. 7, 919-929 (2005).
Rouhier, N, Villarejo, A, Srivastava, M, Gelhaye, E, Keech, O, Droux, M, Finkemeier, I, Samuelsson, G, Dietz, Karl-Josef, Jacquot, JP, and Wingsle, G. “Identification of plant glutaredoxin targets”. ANTIOXIDANTS & REDOX SIGNALING 7.7-8 (2005): 919-929.
This data publication is cited in the following publications:
This publication cites the following data publications:

73 Citations in Europe PMC

Data provided by Europe PubMed Central.

Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.
Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S., Hortic Res 2(), 2015
PMID: 26623076
Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.
Comadira G, Rasool B, Karpinska B, Morris J, Verrall SR, Hedley PE, Foyer CH, Hancock RD., J. Exp. Bot. 66(12), 2015
PMID: 26038307
Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts.
Yoshida K, Hara S, Hisabori T., J. Biol. Chem. 290(23), 2015
PMID: 25878252
Cysteines under ROS attack in plants: a proteomics view.
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J., J. Exp. Bot. 66(10), 2015
PMID: 25750420
DYn-2 Based Identification of Arabidopsis Sulfenomes.
Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van Breusegem F, Messens J., Mol. Cell Proteomics 14(5), 2015
PMID: 25693797
Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro.
Bender KW, Wang X, Cheng GB, Kim HS, Zielinski RE, Huber SC., Biochem. J. 467(3), 2015
PMID: 25678081
Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.
Daloso DM, Muller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari F, Nunes-Nesi A, Buchanan BB, Reichheld JP, Araujo WL, Fernie AR., Proc. Natl. Acad. Sci. U.S.A. 112(11), 2015
PMID: 25646482
Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.
Morisse S, Michelet L, Bedhomme M, Marchand CH, Calvaresi M, Trost P, Fermani S, Zaffagnini M, Lemaire SD., J. Biol. Chem. 289(43), 2014
PMID: 25202015
High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii.
Zaffagnini M, Michelet L, Sciabolini C, Di Giacinto N, Morisse S, Marchand CH, Trost P, Fermani S, Lemaire SD., Mol Plant 7(1), 2014
PMID: 24157611
Glutaredoxins are essential for stress adaptation in the cyanobacterium Synechocystis sp. PCC 6803.
Sanchez-Riego AM, Lopez-Maury L, Florencio FJ., Front Plant Sci 4(), 2013
PMID: 24204369
Leaf proteome profiling of transgenic mint infected with Alternaria alternata.
Sinha R, Bhattacharyya D, Majumdar AB, Datta R, Hazra S, Chattopadhyay S., J Proteomics 93(), 2013
PMID: 23369890
Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum.
Kikutani S, Tanaka R, Yamazaki Y, Hara S, Hisabori T, Kroth PG, Matsuda Y., J. Biol. Chem. 287(24), 2012
PMID: 22535967
Determination of in vivo disulfide-bonded proteins in Arabidopsis.
Alvarez S, Wilson GH, Chen S., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(1-2), 2009
PMID: 19058769
Thioredoxin h System and Wheat Seed Quality.
Zahid Abderrakib, Afoulous Samia, Cazalis Roland., 2008
PMID: IND44130488
Functional analysis and expression characteristics of chloroplastic Prx IIE.
Gama F, Brehelin C, Gelhaye E, Meyer Y, Jacquot JP, Rey P, Rouhier N., Physiol Plant 133(3), 2008
PMID: 18422870
A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase.
Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K., FEBS J. 275(3), 2008
PMID: 18167143

44 References

Data provided by Europe PubMed Central.

Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics.
Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB., FEBS Lett. 547(1-3), 2003
PMID: 12860404
Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cis-trans isomerase activity.
Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T., J. Biol. Chem. 278(34), 2003
PMID: 12923164
Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different.
Lindahl M, Florencio FJ., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14673118
Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana.
Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T., Plant Cell Physiol. 45(1), 2004
PMID: 14749482
Defining the plant disulfide proteome.
Lee K, Lee J, Kim Y, Bae D, Kang KY, Yoon SC, Lim D., Electrophoresis 25(3), 2004
PMID: 14760647
Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli.
Kumar JK, Tabor S, Richardson CC., Proc. Natl. Acad. Sci. U.S.A. 101(11), 2004
PMID: 15004283
Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro.
Achebach S, Tran QH, Vlamis-Gardikas A, Mullner M, Holmgren A, Unden G., FEBS Lett. 565(1-3), 2004
PMID: 15135079
New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii.
Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M, Decottignies P., Proc. Natl. Acad. Sci. U.S.A. 101(19), 2004
PMID: 15123830
Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol.
Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R., J. Biol. Chem. 279(21), 2004
PMID: 15024005
Classification of plant thioredoxins by sequence similarity and intron position.
Meyer Y, Vignols F, Reichheld JP., Meth. Enzymol. 347(), 2002
PMID: 11898430
Plant glutaredoxins: still mysterious reducing systems.
Rouhier N, Gelhaye E, Jacquot JP., Cell. Mol. Life Sci. 61(11), 2004
PMID: 15170506
Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins.
Meek SE, Lane WS, Piwnica-Worms H., J. Biol. Chem. 279(31), 2004
PMID: 15161933
A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins.
Davis JM, Egelkrout EE, Coleman GD, Chen TH, Haissig BE, Riemenschneider DE, Gordon MP., Plant Mol. Biol. 23(1), 1993
PMID: 8106009
Kinetic studies of pea carbonic anhydrase.
Johansson IM, Forsman C., Eur. J. Biochem. 218(2), 1993
PMID: 8269932


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 15998247
PubMed | Europe PMC

Search this title in

Google Scholar