Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements

Seidel T, Golldack D, Dietz K-J (2005)
FEBS LETTERS 579(20): 4374-4382.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
The plant V-ATPase is a protein complex of 13 different VHA-subunits and functions as ATP driven motor that electrogenically translocates H+ into endomembrane compartments. The central rotor extends into the hexameric head that is fixed by peripheral stators to an eccentric membrane domain. The localization and orientation of VHA-subunits of the head and peripheral stalk region were investigated by in vivo fluorescence resonance energy transfer (FRET). To this end, VHA-E, VHA-G, VHA-H of the peripheral stalks as well as subunits VHA-A and VHA-B were C-terminally fused to cyan (CFP) and yellow fluorescent protein (YFP). Protoplasts transfected with FRET-pairs of CFP-donor and YFP-acceptor fluorophores fused to VHA-subunits were analysed for FRET by laser scanning microscopy. The result of the C-termini mapping allows to refine the arrangement and interaction of the subunits within the V-ATPase complex in vivo. Furthermore, expression of fused VHA-E and VHA-H stimulated acidification of protoplast vacuoles, while other constructs had no major effect on vacuolar pH tentatively indicating a regulatory role of these subunits in plants. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Seidel T, Golldack D, Dietz K-J. Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS LETTERS. 2005;579(20):4374-4382.
Seidel, T., Golldack, D., & Dietz, K. - J. (2005). Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS LETTERS, 579(20), 4374-4382.
Seidel, T., Golldack, D., and Dietz, K. - J. (2005). Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS LETTERS 579, 4374-4382.
Seidel, T., Golldack, D., & Dietz, K.-J., 2005. Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS LETTERS, 579(20), p 4374-4382.
T. Seidel, D. Golldack, and K.-J. Dietz, “Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements”, FEBS LETTERS, vol. 579, 2005, pp. 4374-4382.
Seidel, T., Golldack, D., Dietz, K.-J.: Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements. FEBS LETTERS. 579, 4374-4382 (2005).
Seidel, Thorsten, Golldack, Dortje, and Dietz, Karl-Josef. “Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements”. FEBS LETTERS 579.20 (2005): 4374-4382.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions.
Tabke K, Albertmelcher A, Vitavska O, Huss M, Schmitz HP, Wieczorek H., Biochem. J. 462(1), 2014
PMID: 24805887
Quantification of Forster resonance energy transfer by monitoring sensitized emission in living plant cells.
Muller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740
Kaede for detection of protein oligomerization.
Wolf H, Barisas BG, Dietz KJ, Seidel T., Mol Plant 6(5), 2013
PMID: 23430050
Elements of transcriptional machinery are compatible among plants and mammals.
Wolf A, Akrap N, Marg B, Galliardt H, Heiligentag M, Humpert F, Sauer M, Kaltschmidt B, Kaltschmidt C, Seidel T., PLoS ONE 8(1), 2013
PMID: 23326494
The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus.
Kindgren P, Kremnev D, Blanco NE, de Dios Barajas Lopez J, Fernandez AP, Tellgren-Roth C, Kleine T, Small I, Strand A., Plant J. 70(2), 2012
PMID: 22211401
Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.
Klippel S, Wieczorek M, Schumann M, Krause E, Marg B, Seidel T, Meyer T, Knapp EW, Freund C., J. Biol. Chem. 286(44), 2011
PMID: 21917930
Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins.
Couturier J, Stroher E, Albetel AN, Roret T, Muthuramalingam M, Tarrago L, Seidel T, Tsan P, Jacquot JP, Johnson MK, Dietz KJ, Didierjean C, Rouhier N., J. Biol. Chem. 286(31), 2011
PMID: 21632542
The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
Schnitzer D, Seidel T, Sander T, Golldack D, Dietz KJ., Plant Cell Physiol. 52(5), 2011
PMID: 21474463
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Arabidopsis has two functional orthologs of the yeast V-ATPase assembly factor Vma21p.
Neubert C, Graham LA, Black-Maier EW, Coonrod EM, Liu TY, Stierhof YD, Seidel T, Stevens TH, Schumacher K., Traffic 9(10), 2008
PMID: 18694437
Establishment of a fluorescence resonance energy transfer-based bioassay for detecting dioxin-like compounds.
Lin CI, Hsieh CH, Lee SS, Lee WS, Chang-Chien GP, Pan CY, Lee H., J. Biomed. Sci. 15(6), 2008
PMID: 18604597
Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis.
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ., BMC Cell Biol. 9(), 2008
PMID: 18507826
A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice
CHEN S, TAO L, ZENG L, VEGA-SANCHEZ ME, UMEMURA K, WANG GL., Mol. Plant Pathol. 7(5), 2006
PMID: IND43833176
Show and tell: cell biology of pathogen invasion.
Koh S, Somerville S., Curr. Opin. Plant Biol. 9(4), 2006
PMID: 16714141

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16061227
PubMed | Europe PMC

Search this title in

Google Scholar