Improved photobiological H-2 production in engineered green algal cells

Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005)
JOURNAL OF BIOLOGICAL CHEMISTRY 280(40): 34170-34177.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kruse O, Rupprecht J, Bader K-P, et al. Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY. 2005;280(40):34170-34177.
Kruse, O., Rupprecht, J., Bader, K. - P., Thomas-Hall, S., Schenk, P. M., Finazzi, G., & Hankamer, B. (2005). Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(40), 34170-34177.
Kruse, O., Rupprecht, J., Bader, K. - P., Thomas-Hall, S., Schenk, P. M., Finazzi, G., and Hankamer, B. (2005). Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY 280, 34170-34177.
Kruse, O., et al., 2005. Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 280(40), p 34170-34177.
O. Kruse, et al., “Improved photobiological H-2 production in engineered green algal cells”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pp. 34170-34177.
Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G., Hankamer, B.: Improved photobiological H-2 production in engineered green algal cells. JOURNAL OF BIOLOGICAL CHEMISTRY. 280, 34170-34177 (2005).
Kruse, Olaf, Rupprecht, J, Bader, Klaus-Peter, Thomas-Hall, S, Schenk, PM, Finazzi, G, and Hankamer, B. “Improved photobiological H-2 production in engineered green algal cells”. JOURNAL OF BIOLOGICAL CHEMISTRY 280.40 (2005): 34170-34177.
This data publication is cited in the following publications:
This publication cites the following data publications:

76 Citations in Europe PMC

Data provided by Europe PubMed Central.

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16100118
PubMed | Europe PMC

Search this title in

Google Scholar