The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate

Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J (2005)
Mol Microbiol 58(2): 480-494.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
In a recent study, the putative regulatory gene cg0012 was shown to belong to the regulon of McbR, a global transcriptional regulator of sulphur metabolism in Corynebacterium glutamicum ATCC 13032. A deletion of cg0012, now designated ssuR (sulphonate sulphur utilization regulator), led to the mutant strain C. glutamicum DK100, which was shown to be blocked in the utilization of sulphonates as sulphur sources. According to DNA microarray hybridizations, transcription of the ssu and seu genes, encoding the sulphonate utilization system of C. glutamicum, was considerably decreased in C. glutamicum DK100 when compared with the wild-type strain. Electrophoretic mobility shift assays with purified SsuR protein demonstrated that the upstream regions of ssuI, seuABC, ssuD2 and ssuD1CBA contain SsuR binding sites. A nucleotide sequence alignment of the four DNA fragments containing the SsuR binding sites revealed a common 21 bp motif consisting of T-, GC- and A-rich domains. Mapping of the transcriptional start sites in front of ssuI, seuABC, ssuD2 and ssuD1CBA indicated that the SsuR binding sites are located directly upstream of identified promoter sequences and that the ssu genes are expressed by leaderless transcripts. Binding of the SsuR protein to its operator was shown to be diminished in vitro by the effector substance sulphate and its direct assimilation products adenosine 5'-phosphosulphate, sulphite and sulphide. Real-time reverse transcription polymerase chain reaction experiments verified that the expression of the ssu and seu genes was also repressed in vivo by the presence of sulphate or sulphite. Therefore, the regulatory protein SsuR activates the expression of the ssu and seu genes in C. glutamicum in the absence of the preferred sulphur source sulphate.
Publishing Year
ISSN
PUB-ID

Cite this

Koch DJ, Rückert C, Albersmeier A, et al. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol. 2005;58(2):480-494.
Koch, D. J., Rückert, C., Albersmeier, A., Hüser, A. T., Tauch, A., Pühler, A., & Kalinowski, J. (2005). The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol, 58(2), 480-494.
Koch, D. J., Rückert, C., Albersmeier, A., Hüser, A. T., Tauch, A., Pühler, A., and Kalinowski, J. (2005). The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58, 480-494.
Koch, D.J., et al., 2005. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol, 58(2), p 480-494.
D.J. Koch, et al., “The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate”, Mol Microbiol, vol. 58, 2005, pp. 480-494.
Koch, D.J., Rückert, C., Albersmeier, A., Hüser, A.T., Tauch, A., Pühler, A., Kalinowski, J.: The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol. 58, 480-494 (2005).
Koch, DJ, Rückert, Christian, Albersmeier, Andreas, Hüser, AT, Tauch, Andreas, Pühler, Alfred, and Kalinowski, Jörn. “The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate”. Mol Microbiol 58.2 (2005): 480-494.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
Follmann M, Ochrombel I, Kramer R, Trotschel C, Poetsch A, Ruckert C, Huser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rogner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
CoryneCenter - an online resource for the integrated analysis of corynebacterial genome and transcriptome data.
Neuweger H, Baumbach J, Albaum S, Bekel T, Dondrup M, Huser AT, Kalinowski J, Oehm S, Puhler A, Rahmann S, Weile J, Goesmann A., BMC Syst Biol 1(), 2007
PMID: 18034885
The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.
Brinkrolf K, Brune I, Tauch A., J. Biotechnol. 129(2), 2007
PMID: 17227685
CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395

44 References

Data provided by Europe PubMed Central.

Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates.
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF., Microbiology (Reading, Engl.) 144 ( Pt 9)(), 1998
PMID: 9782504
The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl.
van Der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T., J. Biol. Chem. 274(41), 1999
PMID: 10506196
Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
van der Ploeg JR, Eichhorn E, Leisinger T., Arch. Microbiol. 176(1-2), 2001
PMID: 11479697
Functional analysis of the Bacillus subtilis cysK and cysJI genes.
van der Ploeg JR, Barone M, Leisinger T., FEMS Microbiol. Lett. 201(1), 2001
PMID: 11445163

Sambrook, 1989
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Metabolism of sulfur amino acids in Saccharomyces cerevisiae.
Thomas D, Surdin-Kerjan Y., Microbiol. Mol. Biol. Rev. 61(4), 1997
PMID: 9409150
Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria.
Titgemeyer F, Reizer J, Reizer A, Saier MH Jr., Microbiology (Reading, Engl.) 140 ( Pt 9)(), 1994
PMID: 7952186

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16194234
PubMed | Europe PMC

Search this title in

Google Scholar