Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources

Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J (2005)
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71(10): 6104-6114.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins resembling Ssu proteins from Escherichia coli or Bacillus subtilis, the seu gene products exhibited similarity to the dibenzothiophene-degrading Dsz monooxygenases of Rhodococcus strain IGTS8. Growth tests with the C. glutamicum wild-type and appropriate mutant strains showed that the clustered genes ssuC, ssuB, and ssuA, putatively encoding the components of an ABC-type transporter system, are required for the utilization of aliphatic sulfonates. In C. glutamicum sulfonates are apparently degraded by sulfonatases encoded by ssuD1 and ssuD2. It was also found that the seu genes seuA, seuB, and seuC can effectively replace ssuD1 and ssuD2 for the degradation of sulfonate esters. The utilization of all sulfonates and sulfonate esters tested is dependent on a novel putative reductase encoded by ssuI. Obviously, all monooxygenases encoded by the ssu and seu genes, including SsuD1, SsuD2, SeuA, SeuB, and SeuC, which are reduced flavin mononucleotide dependent according to sequence similarity, have SsuI as an essential component. Using real-time reverse transcription-PCR, the ssu and seu gene cluster was found to be expressed considerably more strongly during growth on sulfonates and sulfonate esters than during growth on sulfate.
Publishing Year
ISSN
PUB-ID

Cite this

Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2005;71(10):6104-6114.
Koch, D. J., Rückert, C., Rey, D. A., Mix, A., Pühler, A., & Kalinowski, J. (2005). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(10), 6104-6114.
Koch, D. J., Rückert, C., Rey, D. A., Mix, A., Pühler, A., and Kalinowski, J. (2005). Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71, 6104-6114.
Koch, D.J., et al., 2005. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 71(10), p 6104-6114.
D.J. Koch, et al., “Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 71, 2005, pp. 6104-6114.
Koch, D.J., Rückert, C., Rey, D.A., Mix, A., Pühler, A., Kalinowski, J.: Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 71, 6104-6114 (2005).
Koch, DJ, Rückert, Christian, Rey, DA, Mix, Andreas, Pühler, Alfred, and Kalinowski, Jörn. “Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71.10 (2005): 6104-6114.
This data publication is cited in the following publications:
This publication cites the following data publications:

17 Citations in Europe PMC

Data provided by Europe PubMed Central.

Genomic and proteomic characterization of Gordonia sp. NB4-1Y in relation to 6 : 2 fluorotelomer sulfonate biodegradation.
Van Hamme JD, Bottos EM, Bilbey NJ, Brewer SE., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23744905
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trotschel C, Albaum SP, Wolff D, Schroder S, Goesmann A, Nattkemper TW, Poetsch A., Mol. Cell Proteomics 11(8), 2012
PMID: 22493176
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.
Laslo T, von Zaluskowski P, Gabris C, Lodd E, Ruckert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ., J. Bacteriol. 194(5), 2012
PMID: 22178972
Advanced MudPIT as a next step toward high proteome coverage.
Franzel B, Wolters DA., Proteomics 11(18), 2011
PMID: 21751368
Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.
Forquin MP, Hebert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I., Appl. Environ. Microbiol. 77(4), 2011
PMID: 21169450
Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.
Franzel B, Frese C, Penkova M, Metzler-Nolte N, Bandow JE, Wolters DA., J. Biol. Inorg. Chem. 15(8), 2010
PMID: 20658302
Adaptation of Corynebacterium glutamicum to salt-stress conditions.
Franzel B, Trotschel C, Ruckert C, Kalinowski J, Poetsch A, Wolters DA., Proteomics 10(3), 2010
PMID: 19950167
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rogner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum.
Barreiro C, Nakunst D, Huser AT, de Paz HD, Kalinowski J, Martin JF., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202085
A combination of metabolome and transcriptome analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator AmtR.
Buchinger S, Strosser J, Rehm N, Hanssler E, Hans S, Bathe B, Schomburg D, Kramer R, Burkovski A., J. Biotechnol. 140(1-2), 2009
PMID: 19041910
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395

37 References

Data provided by Europe PubMed Central.


AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 1989
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source.
van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T., J. Bacteriol. 178(18), 1996
PMID: 8808933
Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
van der Ploeg JR, Eichhorn E, Leisinger T., Arch. Microbiol. 176(1-2), 2001
PMID: 11479697
The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl.
van Der Ploeg JR, Iwanicka-Nowicka R, Bykowski T, Hryniewicz MM, Leisinger T., J. Biol. Chem. 274(41), 1999
PMID: 10506196
Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates.
van der Ploeg JR, Cummings NJ, Leisinger T, Connerton IF., Microbiology (Reading, Engl.) 144 ( Pt 9)(), 1998
PMID: 9782504
Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.
Vermeij P, Wietek C, Kahnert A, Wuest T, Kertesz MA., Mol. Microbiol. 32(5), 1999
PMID: 10361295

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16204527
PubMed | Europe PMC

Search this title in

Google Scholar