Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz K-J, Gianinazzi S, Gianinazzi-Pearson V (2005)
MYCORRHIZA 16(1): 51-60.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.
Erscheinungsjahr
Zeitschriftentitel
MYCORRHIZA
Band
16
Zeitschriftennummer
1
Seite
51-60
ISSN
eISSN
PUB-ID

Zitieren

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA. 2005;16(1):51-60.
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. - J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA, 16(1), 51-60. doi:10.1007/s00572-005-0016-7
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. - J., Gianinazzi, S., and Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA 16, 51-60.
Rivera-Becerril, F., et al., 2005. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA, 16(1), p 51-60.
F. Rivera-Becerril, et al., “Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress”, MYCORRHIZA, vol. 16, 2005, pp. 51-60.
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K.-J., Gianinazzi, S., Gianinazzi-Pearson, V.: Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA. 16, 51-60 (2005).
Rivera-Becerril, F, van Tuinen, D, Martin-Laurent, F, Metwally, A, Dietz, Karl-Josef, Gianinazzi, S, and Gianinazzi-Pearson, V. “Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress”. MYCORRHIZA 16.1 (2005): 51-60.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance.
Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S., Saudi J Biol Sci 23(2), 2016
PMID: 26981010
Reference gene selection for quantitative real-time PCR in Solanum lycopersicum L. inoculated with the mycorrhizal fungus Rhizophagus irregularis.
Fuentes A, Ortiz J, Saavedra N, Salazar LA, Meneses C, Arriagada C., Plant Physiol Biochem 101(), 2016
PMID: 26874621
Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.
Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V., J Exp Bot 63(10), 2012
PMID: 22407649
Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula.
Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S., BMC Plant Biol 11(), 2011
PMID: 21545723
Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination.
Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G., Proteomics 10(21), 2010
PMID: 20957753
On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study.
Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E., Proteomics 9(2), 2009
PMID: 19072729
Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.
Andrade SA, Gratão PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P., Chemosphere 75(10), 2009
PMID: 19268339
Heavy-metal stress induced accumulation of chitinase isoforms in plants.
Békésiová B, Hraska S, Libantová J, Moravcíková J, Matusíková I., Mol Biol Rep 35(4), 2008
PMID: 17701287
Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view.
Ernst WH, Krauss GJ, Verkleij JA, Wesenberg D., Plant Cell Environ 31(1), 2008
PMID: 17999660
Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths.
Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyzak J, Kita A, Römkens PF., Environ Pollut 150(3), 2007
PMID: 17408823
Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices.
Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P., Mycorrhiza 17(1), 2006
PMID: 17061124

65 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694

A-CM, Physiol Plant 109(), 2000
Influences of anthropogenic pollution on mycorrhizal fungal communities.
Cairney JW, Meharg AA., Environ. Pollut. 106(2), 1999
PMID: 15093044

CS, 2000

R, Physiol Plant 89(), 1993
Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils.
Del Val C, Barea JM, Azcon-Aguilar C., Appl. Environ. Microbiol. 65(2), 1999
PMID: 9925606

JP, 2002

E, Mycorrhiza 4(), 1994
A gene from pea (Pisum sativum L.) with homology to metallothionein genes.
Evans IM, Gatehouse LN, Gatehouse JA, Robinson NJ, Croy RR., FEBS Lett. 262(1), 1990
PMID: 2318309

NM, J Exp Bot 48(), 1997
Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare.
Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ., Plant Cell Environ. 26(6), 2003
PMID: 12803610

E, J Plant Physiol 147(), 1995

P, Mol Plant-Microb Interact 7(), 1994

P, Plant J 17(), 1999

C, Plant Soil 240(), 2002
Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.
Grill E, Winnacker EL, Zenk MH., Proc. Natl. Acad. Sci. U.S.A. 84(2), 1987
PMID: 16593801
Direct clone characterization from plaques and colonies by the polymerase chain reaction.
Gussow D, Clackson T., Nucleic Acids Res. 17(10), 1989
PMID: 2734114
Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans.
Heggo A, Angle JS, Chaney RL., Soil Biol. Biochem. 22(6), 1990
PMID: IND90051367
The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium.
Howarth JR, Dominguez-Solis JR, Gutierrez-Alcala G, Wray JL, Romero LC, Gotor C., Plant Mol. Biol. 51(4), 2003
PMID: 12650624

EJ, Plant Soil 226(), 2000
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P., Nucleic Acids Res. 30(24), 2002
PMID: 12490726

M, J Plant Physiol 154(), 1999

S, Physiol Plant 74(), 1988
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A., J. Biotechnol. 108(2), 2004
PMID: 15129719
Symbiotic and non-symbiotic expression of cgMT1, a metallothionein-like gene from the actinorhizal tree Casuarina glauca.
Laplaze L, Gherbi H, Duhoux E, Pawlowski K, Auguy F, Guermache F, Franche C, Bogusz D., Plant Mol. Biol. 49(1), 2002
PMID: 12008901

A, Environ Technol 19(), 1996

C, Mycorrhiza 7(), 1997

C, 2002
Glutathione and homoglutathione synthesis in legume root nodules.
Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M., Plant Physiol. 121(3), 1999
PMID: 10557236

SP, Plant Soil 232(), 2001

AA, Adv Ecol Res 30(), 2000
Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization.
Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M., Plant Physiol. 124(3), 2000
PMID: 11080313

D, Planta 194(), 1994
Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.
Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW., EMBO J. 11(10), 1992
PMID: 1396551

EAH, Plant Physiol 110(), 2000

M, Anal Chim Acta 504(), 2004
Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots.
Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S., New Phytol. 157(3), 2003
PMID: IND23321925

AUTHOR UNKNOWN, 0
Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes.
Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V., J. Exp. Bot. 53(371), 2002
PMID: 11971928
Effect of Cadmium on gamma-Glutamylcysteine Synthesis in Maize Seedlings.
Ruegsegger A, Brunold C., Plant Physiol. 99(2), 1992
PMID: 16668902
Regulation of Glutathione Synthesis by Cadmium in Pisum sativum L.
Ruegsegger A, Schmutz D, Brunold C., Plant Physiol. 93(4), 1990
PMID: 16667659

JM, Mol Plant-Microb Interact 12(), 1999

J, 1989

SAS, 1986

A, 1986

K, Mycorrhiza 10(), 2001

GJ, Adv Agron 51(), 1993

R, J Plant Physiol 154(), 1999
Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance
Liang Zhu Y , Pilon-Smits EA, Jouanin L, Terry N., Plant Physiol. 119(1), 1999
PMID: 9880348
Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase.
Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N., Plant Physiol. 121(4), 1999
PMID: 10594104

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16136340
PubMed | Europe PMC

Suchen in

Google Scholar