Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz K-J, Gianinazzi S, Gianinazzi-Pearson V (2005)
MYCORRHIZA 16(1): 51-60.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA. 2005;16(1):51-60.
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. - J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA, 16(1), 51-60.
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. - J., Gianinazzi, S., and Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA 16, 51-60.
Rivera-Becerril, F., et al., 2005. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA, 16(1), p 51-60.
F. Rivera-Becerril, et al., “Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress”, MYCORRHIZA, vol. 16, 2005, pp. 51-60.
Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K.-J., Gianinazzi, S., Gianinazzi-Pearson, V.: Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. MYCORRHIZA. 16, 51-60 (2005).
Rivera-Becerril, F, van Tuinen, D, Martin-Laurent, F, Metwally, A, Dietz, Karl-Josef, Gianinazzi, S, and Gianinazzi-Pearson, V. “Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress”. MYCORRHIZA 16.1 (2005): 51-60.
This data publication is cited in the following publications:
This publication cites the following data publications:

15 Citations in Europe PMC

Data provided by Europe PubMed Central.

Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance.
Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S., Saudi J Biol Sci 23(2), 2016
PMID: 26981010
Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.
Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V., J. Exp. Bot. 63(10), 2012
PMID: 22407649
Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula.
Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S., BMC Plant Biol. 11(), 2011
PMID: 21545723
Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination.
Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G., Proteomics 10(21), 2010
PMID: 20957753
Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.
Andrade SA, Gratao PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P., Chemosphere 75(10), 2009
PMID: 19268339
On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study.
Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E., Proteomics 9(2), 2009
PMID: 19072729
Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view.
Ernst WH, Krauss GJ, Verkleij JA, Wesenberg D., Plant Cell Environ. 31(1), 2008
PMID: 17999660
Heavy-metal stress induced accumulation of chitinase isoforms in plants.
Bekesiova B, Hraska S, Libantova J, Moravcikova J, Matusikova I., Mol. Biol. Rep. 35(4), 2008
PMID: 17701287
Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths.
Gucwa-Przepiora E, Malkowski E, Sas-Nowosielska A, Kucharski R, Krzyzak J, Kita A, Romkens PF., Environ. Pollut. 150(3), 2007
PMID: 17408823
Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices.
Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P., Mycorrhiza 17(1), 2006
PMID: 17061124

65 References

Data provided by Europe PubMed Central.

Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes.
Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V., J. Exp. Bot. 53(371), 2002
PMID: 11971928
Effect of Cadmium on gamma-Glutamylcysteine Synthesis in Maize Seedlings.
Ruegsegger A, Brunold C., Plant Physiol. 99(2), 1992
PMID: 16668902
Regulation of Glutathione Synthesis by Cadmium in Pisum sativum L.
Ruegsegger A, Schmutz D, Brunold C., Plant Physiol. 93(4), 1990
PMID: 16667659

JM, Mol Plant-Microb Interact 12(), 1999

J, 1989

SAS, 1986

A, 1986

K, Mycorrhiza 10(), 2001

GJ, Adv Agron 51(), 1993

R, J Plant Physiol 154(), 1999
Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance
Liang Zhu Y , Pilon-Smits EA, Jouanin L, Terry N., Plant Physiol. 119(1), 1999
PMID: 9880348
Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase.
Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N., Plant Physiol. 121(4), 1999
PMID: 10594104

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16136340
PubMed | Europe PMC

Search this title in

Google Scholar