Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies

Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005)
Photochemical & Photobiological Sciences 4(12): 957-970.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Solar energy capture, conversion into chemical energy and biopolymers by photoautotrophic organisms, is the basis for almost all life on Earth. A broad range of organisms have developed complex molecular machinery for the efficient conversion of sunlight to chemical energy over the past 3 billion years, which to the present day has not been matched by any man-made technologies. Chlorophyll photochemistry within photosystem II (PSII) drives the water-splitting reaction efficiently at room temperature, in contrast with the thermal dissociation reaction that requires a temperature of ca. 1550 K. The successful elucidation of the high-resolution structure of PSII, and in particular the structure of its Mn4Ca cluster (K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 303, 1831-1838, ref. 1) provides an invaluable blueprint for designing solar powered biotechnologies for the future. This knowledge, combined with new molecular genetic tools, fully sequenced genomes, and an ever increasing knowledge base of physiological processes of oxygenic phototrophs has inspired scientists from many countries to develop new biotechnological strategies to produce renewable CO2-neutral energy from sunlight. This review focuses particularly on the potential of use of cyanobacteria and microalgae for biohydrogen production. Specifically this article reviews the predicted size of the global energy market and the constraints of global warming upon it, before detailing the complex set of biochemical pathways that underlie the photosynthetic process and how they could be modified for improved biohydrogen production.
Erscheinungsjahr
Zeitschriftentitel
Photochemical & Photobiological Sciences
Band
4
Zeitschriftennummer
12
Seite
957-970
ISSN
eISSN
PUB-ID

Zitieren

Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences. 2005;4(12):957-970.
Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C., & Hankamer, B. (2005). Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences, 4(12), 957-970. doi:10.1039/b506923h
Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C., and Hankamer, B. (2005). Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences 4, 957-970.
Kruse, O., et al., 2005. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences, 4(12), p 957-970.
O. Kruse, et al., “Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies”, Photochemical & Photobiological Sciences, vol. 4, 2005, pp. 957-970.
Kruse, O., Rupprecht, J., Mussgnug, J.H., Dismukes, G.C., Hankamer, B.: Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences. 4, 957-970 (2005).
Kruse, Olaf, Rupprecht, Jens, Mussgnug, Jan H., Dismukes, G. Charles, and Hankamer, Ben. “Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies”. Photochemical & Photobiological Sciences 4.12 (2005): 957-970.

64 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Microbial diversity and genomics in aid of bioenergy.
Kalia VC, Purohit HJ., J Ind Microbiol Biotechnol 35(5), 2008
PMID: 18193465
Scale-down of microalgae cultivations in tubular photo-bioreactors--a conceptual approach.
Rosello Sastre R, Csögör Z, Perner-Nochta I, Fleck-Schneider P, Posten C., J Biotechnol 132(2), 2007
PMID: 17561299
Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production.
Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O., J Biotechnol 131(1), 2007
PMID: 17624461
Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B., Plant Biotechnol J 5(6), 2007
PMID: 17764518
Photosynthetic biomass and H₂ production by green algae: from bioengineering to bioreactor scale-up
Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O., Physiol Plant 131(1), 2007
PMID: IND43937744
Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up.
Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O., Physiol Plant 131(1), 2007
PMID: 18251920
Cyanobacterial hydrogenases: diversity, regulation and applications.
Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P., FEMS Microbiol Rev 31(6), 2007
PMID: 17903205
Engineering model proteins for Photosystem II function.
Wydrzynski T, Hillier W, Conlan B., Photosynth Res 94(2-3), 2007
PMID: 17955341
Environmental biocatalysis: from remediation with enzymes to novel green processes.
Alcalde M, Ferrer M, Plou FJ, Ballesteros A., Trends Biotechnol 24(6), 2006
PMID: 16647150
Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device.
Badura A, Esper B, Ataka K, Grunwald C, Wöll C, Kuhlmann J, Heberle J, Rögner M., Photochem Photobiol 82(5), 2006
PMID: 16898857

109 References

Daten bereitgestellt von Europe PubMed Central.

Cleaner skies leave global warming forecasts uncertain.
Schiermeier Q., Nature 435(7039), 2005
PMID: 15889057
Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system.
Fedorov AS, Kosourov S, Ghirardi ML, Seibert M., Appl. Biochem. Biotechnol. 121-124(), 2005
PMID: 15917617
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118
Supramolecular structure of the photosystem II complex from green plants and cyanobacteria.
Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M., Proc. Natl. Acad. Sci. U.S.A. 92(1), 1995
PMID: 7816811
Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool.
Escoubas JM, Lomas M, LaRoche J, Falkowski PG., Proc. Natl. Acad. Sci. U.S.A. 92(22), 1995
PMID: 7479759
Chemiosmotic hypothesis of oxidative phosphorylation.
Mitchell P, Moyle J., Nature 213(5072), 1967
PMID: 4291593
Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes
Hodgson, Aquatic Microbial Ecology 37(), 2004
Reduction of Carbon Dioxide with Molecular Hydrogen in Green Algæ
GAFFRON, Nature 143(3614), 1939

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16307108
PubMed | Europe PMC

Suchen in

Google Scholar