A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme

Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG (2006)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103(1): 81-86.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Roeser D, Preusser-Kunze A, Schmidt B, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2006;103(1):81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., et al. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), 81-86. doi:10.1073/pnas.0507592102
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., and Rudolph, M. G. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103, 81-86.
Roeser, D., et al., 2006. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), p 81-86.
D. Roeser, et al., “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 103, 2006, pp. 81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K., Rudolph, M.G.: A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 103, 81-86 (2006).
Roeser, D, Preusser-Kunze, A, Schmidt, B, Gasow, K, Wittmann, JG, Dierks, Thomas, von Figura, K, and Rudolph, MG. “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103.1 (2006): 81-86.
This data publication is cited in the following publications:
This publication cites the following data publications:

42 Citations in Europe PMC

Data provided by Europe PubMed Central.

Reduced Arylsulfatase B activity in leukocytes from cystic fibrosis patients.
Sharma G, Burke J, Bhattacharyya S, Sharma N, Katyal S, Park RL, Tobacman J., Pediatr Pulmonol 48(3), 2013
PMID: 22550062
The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A.
Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC., J Mol Biol 423(5), 2012
PMID: 22940367
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev Genes Evol 221(3), 2011
PMID: 21706447
Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S., Proc Natl Acad Sci U S A 107(2), 2010
PMID: 20080731
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism.
Colloc'h N, Gabison L, Monard G, Altarsha M, Chiadmi M, Marassio G, Sopkova-de Oliveira Santos J, El Hajji M, Castro B, Abraini JH, Prangé T., Biophys J 95(5), 2008
PMID: 18375516
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J Biol Chem 283(29), 2008
PMID: 18390551
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J Biol Chem 283(26), 2008
PMID: 18408004
Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.
Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP., Hum Mol Genet 17(17), 2008
PMID: 18508857
Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus.
Lee WC, Reniere ML, Skaar EP, Murphy ME., J Biol Chem 283(45), 2008
PMID: 18713745
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarová P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer.
Sevin C, Verot L, Benraiss A, Van Dam D, Bonnin D, Nagels G, Fouquet F, Gieselmann V, Vanier MT, De Deyn PP, Aubourg P, Cartier N., Gene Ther 14(5), 2007
PMID: 17093507

36 References

Data provided by Europe PubMed Central.

Detection of four novel mutations in the iduronate-2-sulfatase gene. Mutations in brief no. 123. Online.
Balzano N, Villani GR, Grosso M, Izzo P, Di Natale P., Hum. Mutat. 11(4), 1998
PMID: 10215411
Molecular basis of mucopolysaccharidosis type II: mutations in the iduronate-2-sulphatase gene.
Hopwood JJ, Bunge S, Morris CP, Wilson PJ, Steglich C, Beck M, Schwinger E, Gal A., Hum. Mutat. 2(6), 1993
PMID: 8111411
Iduronate-2-sulfatase gene mutations in 16 patients with mucopolysaccharidosis type II (Hunter syndrome).
Bunge S, Steglich C, Zuther C, Beck M, Morris CP, Schwinger E, Schinzel A, Hopwood JJ, Gal A., Hum. Mol. Genet. 2(11), 1993
PMID: 8281149
Identification of 16 sulfamidase gene mutations including the common R74C in patients with mucopolysaccharidosis type IIIA (Sanfilippo A).
Bunge S, Ince H, Steglich C, Kleijer WJ, Beck M, Zaremba J, van Diggelen OP, Weber B, Hopwood JJ, Gal A., Hum. Mutat. 10(6), 1997
PMID: 9401012
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K., J. Biol. Chem. 280(15), 2005
PMID: 15708861
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K, Ficner R., J. Biol. Chem. 280(15), 2005
PMID: 15687489
Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2.
Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A, Cosma MP., EMBO Rep. 6(7), 2005
PMID: 15962010
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum. Mutat. 23(6), 2004
PMID: 15146462
Mutations of the iduronate-2-sulfatase gene in 12 Polish patients with mucopolysaccharidosis type II (Hunter syndrome).
Popowska E, Rathmann M, Tylki-Szymanska A, Bunge S, Steglich C, Schwinger E, Gal A., Hum. Mutat. 5(1), 1995
PMID: 7728156

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16368756
PubMed | Europe PMC

Search this title in

Google Scholar