A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme

Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG (2006)
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103(1): 81-86.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Roeser D, Preusser-Kunze A, Schmidt B, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2006;103(1):81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., et al. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), 81-86. doi:10.1073/pnas.0507592102
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., and Rudolph, M. G. (2006). A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103, 81-86.
Roeser, D., et al., 2006. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 103(1), p 81-86.
D. Roeser, et al., “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 103, 2006, pp. 81-86.
Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K., Rudolph, M.G.: A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 103, 81-86 (2006).
Roeser, D, Preusser-Kunze, A, Schmidt, B, Gasow, K, Wittmann, JG, Dierks, Thomas, von Figura, K, and Rudolph, MG. “A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 103.1 (2006): 81-86.
This data publication is cited in the following publications:
This publication cites the following data publications:

42 Citations in Europe PMC

Data provided by Europe PubMed Central.

Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency.
Meshach Paul D, Chadah T, Senthilkumar B, Sethumadhavan R, Rajasekaran R., J. Biomol. Struct. Dyn. (), 2017
PMID: 29048999
Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme.
Meury M, Knop M, Seebeck FP., Angew. Chem. Int. Ed. Engl. 56(28), 2017
PMID: 28544744
Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface.
Watanabe S, Harayama M, Kanemura S, Sitia R, Inaba K., Proc. Natl. Acad. Sci. U.S.A. 114(16), 2017
PMID: 28373561
Copper is a Cofactor of the Formylglycine-Generating Enzyme.
Knop M, Dang TQ, Jeschke G, Seebeck FP., Chembiochem 18(2), 2017
PMID: 27862795
A practical approach to ichthyoses with systemic manifestations.
Saral S, Vural A, Wollenberg A, Ruzicka T., Clin. Genet. 91(6), 2017
PMID: 27377997
Steroid Sulfatase Deficiency and Androgen Activation Before and After Puberty.
Idkowiak J, Taylor AE, Subtil S, O'Neil DM, Vijzelaar R, Dias RP, Amin R, Barrett TG, Shackleton CH, Kirk JM, Moss C, Arlt W., J. Clin. Endocrinol. Metab. 101(6), 2016
PMID: 27003302
An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.
Liu J, Hanne J, Britton BM, Shoffner M, Albers AE, Bennett J, Zatezalo R, Barfield R, Rabuka D, Lee JB, Fishel R., Sci Rep 5(), 2015
PMID: 26582263
In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I).
Knop M, Engi P, Lemnaru R, Seebeck FP., Chembiochem 16(15), 2015
PMID: 26403223
Dealing with oxygen using bare hands.
Mattevi A., FEBS J. 282(17), 2015
PMID: 26179614
[Principles of therapeutic approaches for mucopolysaccharidoses].
Caillaud C., Arch Pediatr 21 Suppl 1(), 2014
PMID: 25063383
Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin.
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK., Glycoconj. J. 30(7), 2013
PMID: 23385884
Reduced Arylsulfatase B activity in leukocytes from cystic fibrosis patients.
Sharma G, Burke J, Bhattacharyya S, Sharma N, Katyal S, Park RL, Tobacman J., Pediatr. Pulmonol. 48(3), 2013
PMID: 22550062
Decreasing activity and altered protein processing of human iduronate-2-sulfatase mutations demonstrated by expression in COS7 cells.
Charoenwattanasatien R, Cairns JR, Keeratichamroen S, Sawangareetrakul P, Tanpaiboon P, Wattanasirichaigoon D, Pangkanon S, Svasti J, Champattanachai V., Biochem. Genet. 50(11-12), 2012
PMID: 22990955
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev. Genes Evol. 221(3), 2011
PMID: 21706447

36 References

Data provided by Europe PubMed Central.

Detection of four novel mutations in the iduronate-2-sulfatase gene. Mutations in brief no. 123. Online.
Balzano N, Villani GR, Grosso M, Izzo P, Di Natale P., Hum. Mutat. 11(4), 1998
PMID: 10215411
Molecular basis of mucopolysaccharidosis type II: mutations in the iduronate-2-sulphatase gene.
Hopwood JJ, Bunge S, Morris CP, Wilson PJ, Steglich C, Beck M, Schwinger E, Gal A., Hum. Mutat. 2(6), 1993
PMID: 8111411
Iduronate-2-sulfatase gene mutations in 16 patients with mucopolysaccharidosis type II (Hunter syndrome).
Bunge S, Steglich C, Zuther C, Beck M, Morris CP, Schwinger E, Schinzel A, Hopwood JJ, Gal A., Hum. Mol. Genet. 2(11), 1993
PMID: 8281149
Identification of 16 sulfamidase gene mutations including the common R74C in patients with mucopolysaccharidosis type IIIA (Sanfilippo A).
Bunge S, Ince H, Steglich C, Kleijer WJ, Beck M, Zaremba J, van Diggelen OP, Weber B, Hopwood JJ, Gal A., Hum. Mutat. 10(6), 1997
PMID: 9401012
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K., J. Biol. Chem. 280(15), 2005
PMID: 15708861
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K, Ficner R., J. Biol. Chem. 280(15), 2005
PMID: 15687489
Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2.
Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A, Cosma MP., EMBO Rep. 6(7), 2005
PMID: 15962010
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum. Mutat. 23(6), 2004
PMID: 15146462
Mutations of the iduronate-2-sulfatase gene in 12 Polish patients with mucopolysaccharidosis type II (Hunter syndrome).
Popowska E, Rathmann M, Tylki-Szymanska A, Bunge S, Steglich C, Schwinger E, Gal A., Hum. Mutat. 5(1), 1995
PMID: 7728156

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16368756
PubMed | Europe PMC

Search this title in

Google Scholar